Purpose: Worldwide, cardiovascular disease is the leading cause of hospitalization and death. Recently, the use of magnetizable nanoparticles for medical drug delivery has received much attention for potential treatment of both cancer and cardiovascular disease. However, proper understanding of the interacting magnetic field forces and the hydrodynamics of blood flow is needed for effective implementation.
View Article and Find Full Text PDFThe timely detection and diagnosis of diseases and accurate monitoring of specific genetic conditions require rapid and accurate separation, sorting, and direction of target cell types toward a sensor device surface. In that regard, cellular manipulation, separation, and sorting are progressively finding application potential within various bioassay applications such as medical disease diagnosis, pathogen detection, and medical testing. The aim of this paper is to present the design and development of a simple traveling wave ferro-microfluidic device and system rig purposed for the potential manipulation and magnetophoretic separation of cells in water-based ferrofluids.
View Article and Find Full Text PDFCell counting and sorting is a vital step in the purification process within the area of biomedical research. It has been widely reported and accepted that the use of hydrodynamic focusing in conjunction with the application of a dielectrophoretic () force allows efficient separation of biological entities such as platelets from red blood cell () samples due to their size difference. This paper presents computational results of a multiphysics simulation modelling study on evaluating continuous separation of RBCs and platelets in a microfluidic device design with saw-tooth profile electrodes via DEP.
View Article and Find Full Text PDFThis paper presents the methodology and computational results of simulated medical drug targeting via induced magnetism intended for administering intravenous patient-specific doses of therapeutic agents in a Circle of Willis (CoW) model. The multi-physics computational model used in this work is from our previous works. The computational model is used to analyze pulsatile blood flow, particle motion, and particle capture efficiency in a magnetized region using the magnetic properties of magnetite and equations describing the magnetic forces acting on particles produced by an external cylindrical electromagnetic coil.
View Article and Find Full Text PDFPurpose: The aim of the present work is to present the development of a computational two-way coupled (fluid and particle coupled) magnetic nanoparticle targeting model to investigate the efficacy of magnetic drug targeting (MDT) in a patient-specific diseased left carotid bifurcation artery. MDT of therapeutic agents using multifunctional carrier particles has the potential to provide effective treatment of both cancer and cardiovascular disease by enabling a variety of localized treatment and diagnostic modalities while minimizing side effects.
Methods: A computational model is developed to analyze pulsatile blood flow, particle motion, and particle capture efficiency in a diseased left carotid bifurcation artery using the magnetic properties of magnetite (FeO) and equations describing the magnetic forces acting on particles produced by an external cylindrical electromagnetic coil.
The ultimate goal of the present work is to aid in the development of tools to assist in the treatment of cardiovascular disease. Gaining an understanding of hemodynamic parameters for medical implants allow clinicians to have some patient-specific proposals for intervention planning. In the present work an experimental and digital computational fluid dynamics (CFD) arterial model consisting of a number of major arteries (aorta, carotid bifurcation, cranial, femoral, jejunal, and subclavian arteries) were fabricated to study: (1) the effects of local hemodynamics (flow parameters) on global hemodynamics (2) the effects of transition from bedrest to upright position (postural change) on hemodynamics, and (3) diffusion of dye (medical drug diffusion simulation) in the arterial system via experimental and numerical techniques.
View Article and Find Full Text PDFA new mode of magnetophoresis is described that is capable of separating micron-sized superparamagnetic beads from complex mixtures with high sensitivity to their size and magnetic moment. This separation technique employs a translating periodic potential energy landscape to transport magnetic beads horizontally across a substrate. The potential energy landscape is created by superimposing an external, rotating magnetic field on top of the local fixed magnetic field distribution near a periodic arrangement of micro-magnets.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.
Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_session7drklgf7f7utttf89qul56ojoj8htuck): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once