Publications by authors named "Rodriguez-Vargas I"

The fundamental properties of 1D Dirac-like problems in silicene and transition metal dichalcogenides (TMDs) are derived with the use of the transfer matrix. Analytic expressions for the transmission coefficient and the bound states are obtained for these 2D materials. The continuity between states of perfect transmission and bound states is also addressed in silicene and TMDs.

View Article and Find Full Text PDF

Fano resonances appear in plenty of physical phenomena due to the interference phenomena of a continuum spectrum and discrete states. In gated bilayer graphene junctions, the chiral matching at oblique incidence between the spectrum of electron states outside the electrostatic barrier and hole bound states inside it gives rise to an asymmetric line shape in the transmission as a function of the energy or Fano resonance. Here, we show that Fano resonances are also possible in gated phosphorene junctions along the zigzag direction.

View Article and Find Full Text PDF

Ordered and disordered semiconductor superlattices represent structures with completely opposed properties. For instance, ordered superlattices exhibit extended Bloch-like states, while disordered superlattices present localized states. These characteristics lead to higher conductance in ordered superlattices compared to disordered ones.

View Article and Find Full Text PDF

Monomer, dimer and trimer semiconductor superlattices are an alternative for bandgap engineering due to the possibility of duplicate, triplicate, and in general multiply the number of minibands and minigaps in a specific energy region. Here, we show that monomer, dimer, and trimer magnetic silicene superlattices (MSSLs) can be the basis for tunable magnetoresistive devices due to the multiplication of the peaks of the tunneling magnetoresistance (TMR). In addition, these structures can serve as spin-valleytronic devices due to the formation of two well-defined spin-valley polarization states by appropriately adjusting the superlattice structural parameters.

View Article and Find Full Text PDF

Gaussian and Gaussian-related structures are quite attractive due to its versatility to modulate the electronic transport, including its possibility as electron filters. Here, we show that these non-conventional profiles are not the exception when dealing with Fermi velocity barriers in monolayer graphene. In particular, we show that Gaussian Fermi velocity graphene barriers (G-FVGBs) and Gaussian-pulsed-like Fermi velocity graphene superlattices (GPL-FVGSLs) can serve as electron band-pass filters and oscillating conductance structures.

View Article and Find Full Text PDF

The transfer matrix method is considered to obtain the fundamental properties of 1D Dirac-like problems. The case of 1D problems in monolayer graphene is addressed. The main characteristics of the transfer matrix are analyzed, contrasting them with the ones corresponding to 1D Schrödinger-like problems.

View Article and Find Full Text PDF

Periodic superlattices constitute ideal structures to modulate the transport properties of two-dimensional materials. In this paper, we show that the tunneling magnetoresistance (TMR) in phosphorene can be tuned effectively through periodic magnetic modulation. Deltaic magnetic barriers are arranged periodically along the phosphorene armchair direction in parallel (PM) and anti-parallel magnetization (AM) fashion.

View Article and Find Full Text PDF

Magnetic silicene superlattices (MSSLs) are versatile structures with spin-valley polarization and tunneling magnetoresistance (TMR) capabilities. However, the oscillating transport properties related to the superlattice periodicity impede stable spin-valley polarization states reachable by reversing the magnetization direction. Here, we show that aperiodicity can be used to improve the spin-valley polarization and TMR by reducing the characteristic conductance oscillations of periodic MSSLs (P-MSSLs).

View Article and Find Full Text PDF

Magnetic silicene junctions are versatile structures with spin-valley polarization and magnetoresistive capabilities. Here, we investigate the temperature effects on the transport properties of single magnetic silicene junctions. We use the transfer matrix method and the Landauer-Büttiker formalism to calculate the transmittance, conductance, spin-valley polarization and tunneling magnetoresistance (TMR).

View Article and Find Full Text PDF

We study the electronic transport of armchair (AC) and zigzag (ZZ) gated phosphorene junctions. We find confined states for both direction-dependent phosphorene junctions. In the case of AC junctions confined states are reflected in the transmission properties as Fabry-Pérot resonances at normal and oblique incidence.

View Article and Find Full Text PDF

The transmission and transport properties of biperiodic graphene superlattices are studied theoretically. Special attention is paid to the so-called transparent states of biperiodic superlattices. A Dirac-like Hamiltonian is used to describe the charge carriers in graphene.

View Article and Find Full Text PDF

Fano resonances of bilayer graphene could be attractive for thermoelectric devices. The special profile presented by such resonances could significantly enhance the thermoelectric properties. In this work, we study the thermoelectric properties of bilayer graphene single and double barrier structures.

View Article and Find Full Text PDF

2D materials open the possibility to study Dirac electrons in complex self-similar geometries. The two-dimensional nature of materials like graphene, silicene, phosphorene and transition-metal dichalcogenides allow the nanostructuration of complex geometries through metallic electrodes, interacting substrates, strain, etc. So far, the only 2D material that presents physical properties that directly reflect the characteristics of the complex geometries is monolayer graphene.

View Article and Find Full Text PDF

Electron transmission through different non-conventional (non-uniform barrier height) gated and gapped graphene superlattices (GSLs) is studied. Linear, Gaussian, Lorentzian and Pöschl-Teller superlattice potential profiles have been assessed. A relativistic description of electrons in graphene as well as the transfer matrix method have been used to obtain the transmission properties.

View Article and Find Full Text PDF

In this work, we address the ubiquitous phenomenon of Fano resonances in bilayer graphene. We consider that this phenomenon is as exotic as other phenomena in graphene because it can arise without an external extended states source or elaborate nano designs. However, there are not theoretical and/or experimental studies that report the impact of Fano resonances on the transport properties.

View Article and Find Full Text PDF

Graphene has proven to be an ideal system for exotic transport phenomena. In this work, we report another exotic characteristic of the electron transport in graphene. Namely, we show that the linear-regime conductance can present self-similar patterns with well-defined scaling rules, once the graphene sheet is subjected to Cantor-like nanostructuring.

View Article and Find Full Text PDF