Lasso peptides, ribosomally synthesized and post-translationally modified peptides, are primarily produced by bacteria and some archaea. Streptomyces lasso peptides have been known for their antimicrobial, anticancer, and antiviral properties. However, understanding their role in the morphology and production of secondary metabolites remains limited.
View Article and Find Full Text PDFThe metaproteomic approach allows a deep microbiome characterization in different complex systems. Based on metaproteome data, microbial communities' composition, succession, and functional role in different environmental conditions can be established.The main challenge in metaproteomic studies is protein extraction, and although many protocols have been developed, a few are focused on the protein extraction of fermented foods.
View Article and Find Full Text PDFThe Streptomyces genus comprises Gram-positive bacteria known to produce over two-thirds of the antibiotics used in medical practice. The biosynthesis of these secondary metabolites is highly regulated and influenced by a range of nutrients present in the growth medium. In Streptomyces coelicolor, glucose inhibits the production of actinorhodin (ACT) and undecylprodigiosin (RED) by a process known as carbon catabolite repression (CCR).
View Article and Find Full Text PDFThe increase in bacterial resistance generated by the indiscriminate use of antibiotics in medical practice set new challenges for discovering bioactive natural products as alternatives for therapeutics. Lanthipeptides are an attractive natural product group that has been only partially explored and shows engaging biological activities. These molecules are small peptides with potential application as therapeutic agents.
View Article and Find Full Text PDFSiderophores are low-molecular-weight secondary metabolites that function as iron chelators. Under iron-deficiency conditions, they are produced by a wide variety of microbes, allowing them to increase their iron uptake. The primary function of these compounds is the environmental iron scavenging and its transport into the cytosol.
View Article and Find Full Text PDFThe use of particles to develop vaccines and treatments for a wide variety of diseases has increased, and their success has been demonstrated in preclinical investigations. Accurately targeting cells and minimizing doses and adverse side effects, while inducing an adequate biological response, are important advantages that particulate systems offer. The most used particulate systems are liposomes and their derivatives, immunostimulatory complexes, virus-like particles, and organic or inorganic nano- and microparticles.
View Article and Find Full Text PDFDespite the advances in understanding the regulatory networks for secondary metabolite production in Streptomyces, the participation of the two-component systems (TCS) in this process still requires better characterization. These sensing systems and their responses to environmental stimuli have been described by evaluating mutant strains with techniques that allow in-depth regulatory responses. However, defining the stimulus that triggers their activation is still a task.
View Article and Find Full Text PDFRaw starch microparticles (SMPs) proved efficient antigen carriers with adjuvant properties when administered via the mucosal route; however, the underlying mechanisms associated with this bioactivity are unknown. In the present study, we explored the mucoadhesion properties, fate, and toxicity of starch microparticles after mucosal administration. Nasally administered microparticles were mainly retained in nasal turbinates, reaching the nasal-associated lymphoid tissue; this step is facilitated by the ability of the microparticles to penetrate through the mucous epithelium.
View Article and Find Full Text PDFMucus is a viscoelastic gel that acts as a protective barrier for epithelial surfaces. The mucosal vehicles and adjuvants need to pass through the mucus layer to make drugs and vaccine delivery by mucosal routes possible. The mucoadhesion of polymer particle adjuvants significantly increases the contact time between vaccine formulations and the mucosa; then, the particles can penetrate the mucus layer and epithelium to reach mucosa-associated lymphoid tissues.
View Article and Find Full Text PDFA robust comprehension of phagocytosis is crucial for understanding its importance in innate immunity. A detailed description of the molecular mechanisms that lead to the uptake and clearance of endogenous and exogenous particles has helped elucidate the role of phagocytosis in health and infectious or autoimmune diseases. Furthermore, knowledge about this cellular process is important for the rational design and development of particulate systems for the administration of vaccines or therapeutics.
View Article and Find Full Text PDFThe Embleya genus is a new member of the Streptomycetaceae family formed by only two species isolated from soil (Embleya scabrispora and Embleya hyalina). Strain NF3 is an endophytic actinobacterium obtained from the medicinal tree Amphipterygium adstringens. By 16S rRNA gene analysis, NF3 strain was identified as Embleya sp.
View Article and Find Full Text PDFMicroorganisms are remarkable producers of a wide diversity of natural products that significantly improve human health and well-being. Currently, these natural products comprise half of all the pharmaceuticals on the market. After the discovery of penicillin by Alexander Fleming 85 years ago, the search for and study of antibiotics began to gain relevance as drugs.
View Article and Find Full Text PDFActinobacteria embroil Gram-positive microbes with high guanine and cytosine contents in their DNA. They are the source of most antimicrobials of bacterial origin utilized in medicine today. Their genomes are among the richest in novel secondary metabolites with high biotechnological potential.
View Article and Find Full Text PDFPozol is an acidic, refreshing, and non-alcoholic traditional Mayan beverage made with nixtamalized corn dough that is fermented spontaneously. The extensive analysis of the microbiology, biochemistry and metaproteomics of pozol allowed the construction of a comprehensive image of the fermentation system. The main changes in both the substrate and the microbiota occurred in the first 9 h of fermentation.
View Article and Find Full Text PDFStreptomyces peucetius var. caesius, the doxorubicin-producing strain, has two glucokinases (Glks) for glucose phosphorylation. One of them (ATP-Glk) uses adenosine triphosphate as its phosphate source, and the other one uses polyphosphate (PP).
View Article and Find Full Text PDFSecondary microbial metabolites have various functions for the producer microorganisms, which allow them to interact and survive in adverse environments. In addition to these functions, other biological activities may have clinical relevance, as diverse as antimicrobial, anticancer and hypocholesterolaemic effects. These metabolites are usually formed during the idiophase of growth and have a wide diversity in their chemical structures.
View Article and Find Full Text PDFTraditional fermentations have been widely studied from the microbiological point of view, but little is known from the functional perspective. In this work, nitrogen fixation by free-living nitrogen-fixing bacteria was conclusively demonstrated in pozol, a traditional Mayan beverage prepared with nixtamalized and fermented maize dough. Three aspects of nitrogen fixation were investigated to ensure that fixation actually happens in the dough: (i) the detection of acetylene reduction activity directly in the substrate, (ii) the presence of potential diazotrophs, and (iii) an increase in acetylene reduction by inoculation with one of the microorganisms isolated from the dough.
View Article and Find Full Text PDFPozol is a beverage prepared with maize dough made after boiling the kernels in limewater. This pretreatment could act as a selective force that shapes the starter microbiota, with microorganisms able to survive the fermentation. Since Streptococcus infantarius subsp.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
April 2020
The published online version of this paper contains mistake. The authors first and last names have been interchanged. The correct version is given above.
View Article and Find Full Text PDFBioinformatic mining of the Streptomyces thermocarboxydus K155 genome predicted the presence of four synthases for the production of geosmin, hopene, albaflavenone, and a type B-type A diterpenoid system like that described for labdane-related diterpenoids (LRD). The lrd cluster was comprised by an operon of four genes (lrdABDC). This cluster seemed to be silent in the wild-type strain, as neither labdane nor terpene-like compounds were detected by UPLC-TOF-MS and GC-MS analyses in both culture supernatants and mycelial extracts.
View Article and Find Full Text PDFIn recent years, the number of pathogenic microorganisms resistant to antibiotics has increased alarmingly. For the next 10-20 years, health organizations forecast high human mortality caused by these microorganisms. Therefore, the search for new anti-infectives is quite necessary and urgent.
View Article and Find Full Text PDFThe persistence of tuberculosis (TB) as one of the top 10 causes of death worldwide, the growing incidence of multidrug-resistant tuberculosis and the controversial efficacy of the Bacille Calmette-Guérin (BCG) vaccine drives the development of new generation multistage vaccines against this disease that can boost BCG-primed immunity. The use of polymeric microparticles for this purpose increases due to their advantages, especially their good safety levels and intrinsic immunostimulant properties. We recently explored and demonstrated the reinforcing and adjuvant potential of starch microparticles (SMPs) that administered intranasally to BCG-primed BALB/c mice, alone or in combination with a recombinant antigen, increased survival rates and induced a reduction of bacterial load in the lungs of mice infected with tuberculosis.
View Article and Find Full Text PDFThe labdane-related diterpenoids (LRDs) are a large group of natural products with a broad range of biological activities. They are synthesized through two consecutive reactions catalyzed by class II and I diterpene synthases (DTSs). The structural complexity of LRDs mainly depends on the catalytic activity of class I DTSs, which catalyze the formation of bicyclic to pentacyclic LRDs, using as a substrate the catalytic product of class II DTSs.
View Article and Find Full Text PDFssp. 25124 (25124) is a lactic acid bacterium (LAB) isolated from , a refreshing beverage prepared by suspending fermented (a thermal and alkali-treated maize dough) in water. Although s are the predominant strains in fermented doughs, such as sourdoughs, and non-nixtamalized fermented maize foods, the microbiota is markedly different.
View Article and Find Full Text PDFFor a long time, food microbiota has been studied using traditional microbiological techniques. With the arrival of molecular or culture-independent techniques, a strong understanding of microbiota dynamics has been achieved. However, analyzing the functional role of microbial communities is not an easy task.
View Article and Find Full Text PDF