Bladder cancer poses significant clinical challenges due to its high metastatic potential and poor prognosis, especially when it progresses to muscle-invasive stages. Here, we show that the mA reader YTHDC1 is downregulated in muscle-invasive bladder cancer and is negatively correlated with the expression of epithelial‒mesenchymal transition genes. The functional inhibition or depletion of YTHDC1 increased the migration and invasion of urothelial cells.
View Article and Find Full Text PDFCHO cells are major hosts for the industrial production of therapeutic proteins and their production stability is of considerable economic significance. It is widely known that CHO cells can rapidly acquire genetic alterations, which affects their genetic homogeneity over time. However, the role of non-genetic mechanisms, including epigenetic mechanisms such as DNA methylation, remains poorly understood.
View Article and Find Full Text PDFCutaneous squamous cell carcinoma (cSCC) is a serious public health problem due to its high incidence and metastatic potential. It may progress from actinic keratosis (AK), a precancerous lesion, or the in situ carcinoma, Bowen's disease (BD). During this progression, malignant keratinocytes activate dermal fibroblasts into tumor promoting cancer-associated fibroblasts (CAFs), whose origin and emergence remain largely unknown.
View Article and Find Full Text PDFMETTL3 is the major writer of N6-Methyladenosine (mA) and has been associated with controversial roles in cancer. This is best illustrated in urothelial carcinoma of the bladder (UCB), where METTL3 was described to have both oncogenic and tumor-suppressive functions. Here, we reinvestigated the role of METTL3 in UCB.
View Article and Find Full Text PDFHigh mobility group (HMG) proteins are chromatin regulators with essential functions in development, cell differentiation and cell proliferation. The protein HMG20A is predicted by the AlphaFold2 software to contain three distinct structural elements, which we have functionally characterized: i) an amino-terminal, intrinsically disordered domain with transactivation activity; ii) an HMG box with higher binding affinity for double-stranded, four-way-junction DNA than for linear DNA; and iii) a long coiled-coil domain. Our proteomic study followed by a deletion analysis and structural modeling demonstrates that HMG20A forms a complex with the histone reader PHF14, via the establishment of a two-stranded alpha-helical coiled-coil structure.
View Article and Find Full Text PDFKeratinocyte cancers (KC) are the most prevalent malignancies in fair-skinned populations, posing a significant medical and economic burden to health systems. KC originate in the epidermis and mainly comprise basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC). Here, we combined single-cell multi-omics, transcriptomics, and methylomics to investigate the epigenomic dynamics during epidermal differentiation.
View Article and Find Full Text PDFAm J Trop Med Hyg
November 2021
Neglected rural communities in Latin America are highly vulnerable to COVID-19 due to a poor health infrastructure and limited access to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnosis. Manabí is a province of the Coastal Region of Ecuador characterized by a high prevalence of rural population living under poverty conditions. In the current study, we present the retrospective analysis of the results of a massive SARS-CoV-2 testing operation in nonhospitalized populations from Manabí carried out from August to September 2020.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is characterized by extensive desmoplasia, which challenges the molecular analyses of bulk tumor samples. Here we FACS-purified epithelial cells from human PDAC and normal pancreas and derived their genome-wide transcriptome and DNA methylome landscapes. Clustering based on DNA methylation revealed two distinct PDAC groups displaying different methylation patterns at regions encoding repeat elements.
View Article and Find Full Text PDFBackground: Hutchinson-Gilford progeria syndrome (HGPS) is a progeroid disease characterized by the early onset of age-related phenotypes including arthritis, loss of body fat and hair, and atherosclerosis. Cells from affected individuals express a mutant version of the nuclear envelope protein lamin A (termed progerin) and have previously been shown to exhibit prominent histone modification changes.
Methods: Here, we analyze the possibility that epigenetic deregulation of lamina-associated domains (LADs) is involved in the molecular pathology of HGPS.
Fibroblasts are an essential cell population for human skin architecture and function. While fibroblast heterogeneity is well established, this phenomenon has not been analyzed systematically yet. We have used single-cell RNA sequencing to analyze the transcriptomes of more than 5,000 fibroblasts from a sun-protected area in healthy human donors.
View Article and Find Full Text PDFThe formation and maintenance of the epidermis depend on epidermal stem cell differentiation and must be tightly regulated. Epigenetic mechanisms such as DNA methylation allow the precise gene expression cascade needed during cellular differentiation. However, these mechanisms become deregulated during aging and tumorigenesis, where cellular function and identity become compromised.
View Article and Find Full Text PDFNat Rev Mol Cell Biol
October 2019
Colorectal adenomas are precursor lesions of colorectal cancers and represent clonal amplifications of single cells from colonic crypts. DNA methylation patterns specify cell-type identity during cellular differentiation and, therefore, provide opportunities for the molecular analysis of tumors. We have now analyzed DNA methylation patterns in colorectal adenomas and identified three biologically defined subclasses that describe different intestinal crypt differentiation stages.
View Article and Find Full Text PDFMesenchymal stromal cells are involved in the pathogenesis of myelodysplastic syndromes and acute myeloid leukemia, but the underlying mechanisms are incompletely understood. To further characterize the pathological phenotype we performed RNA sequencing of mesenchymal stromal cells from patients with myelodysplastic syndromes and acute myeloid leukemia and found a specific molecular signature of genes commonly deregulated in these disorders. Pathway analysis showed a strong enrichment of genes related to osteogenesis, senescence, inflammation and inhibitory cytokines, thereby reflecting the structural and functional deficits of mesenchymal stromal cells in myelodysplastic syndromes and acute myeloid leukemia on a molecular level.
View Article and Find Full Text PDFMost lung cancer deaths are related to metastases, which indicates the necessity of detecting and inhibiting tumor cell dissemination. Here, we aimed to identify miRNAs involved in metastasis of lung adenocarcinoma as prognostic biomarkers and therapeutic targets. To that end, lymph node metastasis-associated miRNAs were identified in The Cancer Genome Atlas lung adenocarcinoma patient cohort (sequencing data; = 449) and subsequently validated by qRT-PCR in an independent clinical cohort ( = 108).
View Article and Find Full Text PDFIsocitrate dehydrogenases 1 and 2 () are recurrently mutated in acute myeloid leukemia (AML), but their mechanistic role in leukemogenesis is poorly understood. The inhibition of TET enzymes by D-2-hydroxyglutarate (D-2-HG), which is produced by mutant (), has been suggested to promote epigenetic deregulation during tumorigenesis. In addition, also induces a differentiation block in various cell culture and mouse models.
View Article and Find Full Text PDFDNA methylation is important for gene expression and genome stability, and its disruption is thought to play a key role in the initiation and progression of cancer and other diseases. The cluster has been shown to be imprinted in humans, and some of its components are relevant to diverse pathological processes. The purpose of this study was to assess the methylation patterns of the cluster in patients with lung cancer to study its relevance in the pathogenesis of this disease.
View Article and Find Full Text PDFEpigenetic changes represent an attractive mechanism for understanding the phenotypic changes associated with human aging. Age-related changes in DNA methylation at the genome scale have been termed 'epigenetic drift', but the defining features of this phenomenon remain to be established. Human epidermis represents an excellent model for understanding age-related epigenetic changes because of its substantial cell-type homogeneity and its well-known age-related phenotype.
View Article and Find Full Text PDFHematopoietic insufficiency is the hallmark of acute myeloid leukemia (AML) and predisposes patients to life-threatening complications such as bleeding and infections. Addressing the contribution of mesenchymal stromal cells (MSC) to AML-induced hematopoietic failure we show that MSC from AML patients (n=64) exhibit significant growth deficiency and impaired osteogenic differentiation capacity. This was molecularly reflected by a specific methylation signature affecting pathways involved in cell differentiation, proliferation and skeletal development.
View Article and Find Full Text PDFEpigenetic mechanisms are fundamental for shaping the activity of the central nervous system (CNS). Methyl-CpG binding protein 2 (MECP2) acts as a bridge between methylated DNA and transcriptional effectors responsible for differentiation programs in neurons. The importance of MECP2 dosage in CNS is evident in Rett Syndrome and MECP2 duplication syndrome, which are neurodevelopmental diseases caused by loss-of-function mutations or duplication of the MECP2 gene, respectively.
View Article and Find Full Text PDFThe precise regulation of S-phase-specific genes is critical for cell proliferation. How the repressive chromatin configuration mediated by the retinoblastoma protein and repressor E2F factors changes at the G1/S transition to allow transcription activation is unclear. Here we show ChIP-on-chip studies that reveal that the chromatin remodeller CHD8 binds ∼ 2000 transcriptionally active promoters.
View Article and Find Full Text PDFDisruption of the histone modification patterns is one of the most common features of human tumors. However, few genetic alterations in the histone modifier genes have been described in tumorigenesis. Herein we show that the histone methyltransferase SETDB1 undergoes gene amplification in non-small and small lung cancer cell lines and primary tumors.
View Article and Find Full Text PDFIt has been previously described that p21 functions not only as a CDK inhibitor but also as a transcriptional co-repressor in some systems. To investigate the roles of p21 in transcriptional control, we studied the gene expression changes in two human cell systems. Using a human leukemia cell line (K562) with inducible p21 expression and human primary keratinocytes with adenoviral-mediated p21 expression, we carried out microarray-based gene expression profiling.
View Article and Find Full Text PDFA new study by Juergens and colleagues provides the first successful example of a combined epigenetic therapy capable of achieving results similar to those of conventional chemotherapy in refractory metastatic non-small cell lung cancer. Furthermore, the authors describe interesting blood-based DNA methylation biomarkers that may be useful in predicting clinical response.
View Article and Find Full Text PDF