Publications by authors named "Rodriguez-Manzano J"

Objectives: Effective, real-time surveillance of dengue may provide early warning of outbreaks and support targeted disease-control intervention but requires widespread accurate diagnosis and timely case reporting. Research directing innovation in diagnostics for dengue surveillance is lacking. This study aimed to describe experience and requirements of relevant prospective users.

View Article and Find Full Text PDF

Diagnostic tools are key to guiding patient management and informing public health policies to control infectious diseases. However, many diseases still do not have effective diagnostics and much of the global population faces restricted access to reliable, affordable testing. This limitation underscores the urgent need for innovation to enhance diagnostic availability and effectiveness.

View Article and Find Full Text PDF

Sedimentation is an undesirable phenomenon that complicates the design of microsystems that exploit dense microparticles as delivery tools, especially in biotechnological applications. It often informs the integration of continuous mixing modules, consequently impacting the system footprint, cost, and complexity. The impact of sedimentation is significantly worse in systems designed with the intent of particle metering or binary encapsulation in droplets.

View Article and Find Full Text PDF
Article Synopsis
  • Carbapenemase-producing Enterobacterales (CPE), particularly those encoding imipenemase (IMP), were studied for their emergence in a London healthcare network from 2016-2019, showcasing major antibiotic resistance issues across various species.
  • The research combined network analysis of patient pathways with genomic studies, identifying 84 Enterobacterales isolates, mainly from Klebsiella, Enterobacter, and E. coli, with a high prevalence of a specific plasmid linked to resistance genes.
  • Findings revealed an unnoticed interspecies outbreak through plasmid sharing, emphasizing the need for enhanced investigation techniques like DNA sequencing to effectively track and manage pathogen transmission in hospital settings.
View Article and Find Full Text PDF

Antimicrobial resistance (AMR) is a global health challenge that threatens humans, animals and the environment. Evidence is emerging for a role of healthcare infrastructure, environments and patient pathways in promoting and maintaining AMR via direct and indirect mechanisms. Advances in vaccination and monoclonal antibody therapies together with integrated surveillance, rapid diagnostics, targeted antimicrobial therapy and infection control measures offer opportunities to address healthcare-associated AMR risks more effectively.

View Article and Find Full Text PDF

Implementation of biomarkers in sepsis and septic shock in emergency situations, remains highly challenging. This viewpoint arose from a public-private 3-day workshop aiming to facilitate the transition of sepsis biomarkers into clinical practice. The authors consist of international academic researchers and clinician-scientists and industry experts who gathered (i) to identify current obstacles impeding biomarker research in sepsis, (ii) to outline the important milestones of the critical path of biomarker development and (iii) to discuss novel avenues in biomarker discovery and implementation.

View Article and Find Full Text PDF

The COVID-19 pandemic has highlighted the need for rapid and reliable diagnostics that are accessible in resource-limited settings. To address this pressing issue, we have developed a rapid, portable, and electricity-free method for extracting nucleic acids from respiratory swabs (i.e.

View Article and Find Full Text PDF
Article Synopsis
  • Next-generation sequencing technologies and computational advances have enhanced our understanding of gene expression regulation, leading to increased interest in using transcriptomic biomarkers for disease diagnosis, prognosis assessment, and treatment prediction.
  • Despite progress in identifying transcriptomic signatures, challenges such as patient variability and technical integration still complicate their use in standard clinical diagnostics.
  • The article proposes a computational framework that accounts for cross-platform implementation constraints during signature discovery, aiming to facilitate the integration of RNA signatures from high-throughput technologies into nucleic acid amplification methods for clinical use.
View Article and Find Full Text PDF

Developing multiplex PCR assays requires extensive experimental testing, the number of which exponentially increases by the number of multiplexed targets. Dedicated efforts must be devoted to the design of optimal multiplex assays ensuring specific and sensitive identification of multiple analytes in a single well reaction. Inspired by data-driven approaches, we reinvent the process of developing and designing multiplex assays using a hybrid, simple workflow, named Smart-Plexer, which couples empirical testing of singleplex assays and computer simulation to develop optimised multiplex combinations.

View Article and Find Full Text PDF

Dengue is a mosquito-borne disease caused by dengue virus (DENV) serotypes 1-4 which affects 100-400 million adults and children each year. Reverse-transcriptase (RT) quantitative polymerase chain reaction (qPCR) assays are the current gold-standard in diagnosis and serotyping of infections, but their use in low-middle income countries (LMICs) has been limited by laboratory infrastructure requirements. Loop-mediated isothermal amplification (LAMP) assays do not require thermocycling equipment and therefore could potentially be deployed outside laboratories and/or miniaturised.

View Article and Find Full Text PDF

Nucleic acid extraction (NAE) plays a crucial role for diagnostic testing procedures. For decades, dried blood spots (DBS) have been used for serology, drug monitoring, and molecular studies. However, extracting nucleic acids from DBS remains a significant challenge, especially when attempting to implement these applications to the point-of-care (POC).

View Article and Find Full Text PDF

Background: To identify a diagnostic blood transcriptomic signature that distinguishes multisystem inflammatory syndrome in children (MIS-C) from Kawasaki disease (KD), bacterial infections, and viral infections.

Methods: Children presenting with MIS-C to participating hospitals in the United Kingdom and the European Union between April 2020 and April 2021 were prospectively recruited. Whole-blood RNA Sequencing was performed, contrasting the transcriptomes of children with MIS-C (n = 38) to those from children with KD (n = 136), definite bacterial (DB; n = 188) and viral infections (DV; n = 138).

View Article and Find Full Text PDF

Human malaria is a life-threatening parasitic disease with high impact in the sub-Saharan Africa region, where 95% of global cases occurred in 2021. While most malaria diagnostic tools are focused on Plasmodium falciparum, there is a current lack of testing non-P. falciparum cases, which may be underreported and, if undiagnosed or untreated, may lead to severe consequences.

View Article and Find Full Text PDF
Article Synopsis
  • * A new model, the transformer-based conditional domain adversarial network (T-CDAN), aims to address challenges in target classification by reducing data distribution differences, thus improving accuracy in identifying pathogens.
  • * Testing on 198 clinical isolates showed significant accuracy improvements (20.9% for curve-level and 4.9% for sample-level) with T-CDAN, highlighting its potential for better multiplexing in clinical qPCR applications.
View Article and Find Full Text PDF

Real-time polymerase chain reaction (qPCR) enables accurate detection and quantification of nucleic acids and has become a fundamental tool in biological sciences, bioengineering and medicine. By combining multiple primer sets in one reaction, it is possible to detect several DNA or RNA targets simultaneously, a process called multiplex PCR (mPCR) which is key to attaining optimal throughput, cost-effectiveness and efficiency in molecular diagnostics, particularly in infectious diseases. Multiple solutions have been devised to increase multiplexing in qPCR, including techniques, using target-specific fluorescent oligonucleotide probes, and where segregation of the sample enables parallel amplification of multiple targets.

View Article and Find Full Text PDF
Article Synopsis
  • Real-time digital polymerase chain reaction (qdPCR) paired with machine learning is advancing molecular diagnostics, especially for infectious diseases, by analyzing amplification curves for better target classification.
  • Researchers proposed a new framework that uses outlier detection algorithms to filter out nonspecific or inefficient reactions from qdPCR data, enhancing the accuracy of multiplex PCR methods.
  • The study demonstrated a significant improvement in classification performance, increasing sensitivity by 1.2% and reducing incorrect results from 53.5% of melting curves by filtering based on amplification curve characteristics.
View Article and Find Full Text PDF

Dengue is one of the most prevalent infectious diseases in the world. Rapid, accurate and scalable diagnostics are key to patient management and epidemiological surveillance of the dengue virus (DENV), however current technologies do not match required clinical sensitivity and specificity or rely on large laboratory equipment. In this work, we report the translation of our smartphone-connected handheld Lab-on-Chip (LoC) platform for the quantitative detection of two dengue serotypes.

View Article and Find Full Text PDF

The unmet clinical need for accurate point-of-care (POC) diagnostic tests able to discriminate bacterial from viral infection demands a solution that can be used both within healthcare settings and in the field, and that can also stem the tide of antimicrobial resistance. Our approach to solve this problem combine the use of host gene signatures with our Lab-on-a-Chip (LoC) technology enabling low-cost POC expression analysis to detect Infectious Disease. Transcriptomics have been extensively investigated as a potential tool to be implemented in the diagnosis of infectious disease.

View Article and Find Full Text PDF

This paper presents a fully automated point-of-care device for protein quantification using short-DNA aptamers, where no manual sample preparation is needed. The device is based on our novel aptamer-based methodology combined with real-time polymerase chain reaction (qPCR), which we employ for very sensitive protein quantification. DNA amplification through qPCR, sensing and real-time data processing are seamlessly integrated into a point-of-care device equipped with a disposable cartridge for automated sample preparation.

View Article and Find Full Text PDF

Background: Kawasaki disease (KD) is a systemic vasculitis that mainly affects children under 5 years of age. Up to 30% of patients develop coronary artery abnormalities, which are reduced with early treatment. Timely diagnosis of KD is challenging but may become more straightforward with the recent discovery of a whole-blood host response classifier that discriminates KD patients from patients with other febrile conditions.

View Article and Find Full Text PDF

Cervical cancer affects over half a million people worldwide each year, the majority of whom are in resource-limited settings where cytology screening is not available. As persistent human papilloma virus (HPV) infections are a key causative factor, detection of HPV strains now complements cytology where screening services exist. This work demonstrates the efficacy of a handheld Lab-on-Chip (LoC) device, with an external sample extraction process, in detecting cervical cancer from biopsy samples.

View Article and Find Full Text PDF

(APP) is the causative agent of porcine pleuropneumonia, resulting in high economic impact worldwide. There are currently 19 known serovars of APP, with different ones being predominant in specific geographic regions. Outbreaks of pleuropneumonia, characterized by sudden respiratory difficulties and high mortality, can occur when infected pigs are brought into naïve herds, or by those carrying different serovars.

View Article and Find Full Text PDF

Loop-mediated isothermal amplification assays are currently limited to one target per reaction in the absence of melting curve analysis, molecular probes or restriction enzyme digestion. Here, we demonstrate multiplexing of five targets in a single fluorescent channel using digital LAMP and the machine learning-based method amplification curve analysis, resulting in a classification accuracy of 91.33% on 54 186 positive amplification events.

View Article and Find Full Text PDF

Rapid and accurate identification of patients colonised with carbapenemase-producing organisms (CPOs) is essential to adopt prompt prevention measures to reduce the risk of transmission. Recent studies have demonstrated the ability to combine machine learning (ML) algorithms with real-time digital PCR (dPCR) instruments to increase classification accuracy of multiplex PCR assays when using synthetic DNA templates. We sought to determine if this novel methodology could be applied to improve identification of the five major carbapenem-resistant genes in clinical CPO-isolates, which would represent a leap forward in the use of PCR-based data-driven diagnostics for clinical applications.

View Article and Find Full Text PDF