Publications by authors named "Rodriguez-Fortuno F"

Chiral optical forces exhibit opposite signs for the two enantiomeric versions of a chiral molecule or particle. If large enough, these forces might be able to separate enantiomers all optically, which would find numerous applications in different fields, from pharmacology to chemistry. Longitudinal chiral forces are especially promising for tackling the challenging scenario of separating particles of realistically small chiralities.

View Article and Find Full Text PDF

Optical forces and torques offer the route towards full degree-of-freedom manipulation of matter. Exploiting structured light has led to the discovery of gradient and curl forces, and nontrivial optomechanical manifestations, such as negative and lateral optical forces. Here, we uncover the existence of two fundamental torque components, which originate from the reactive helicity gradient and momentum curl of light, and which represent the rotational analogues to the gradient and curl forces, respectively.

View Article and Find Full Text PDF

Light carries intrinsic spin angular momentum (SAM) when the electric or magnetic field vector rotates over time. A familiar vector equation calculates the direction of light's SAM density using the right-hand rule with reference to the electric and magnetic polarisation ellipses. Using Maxwell's equations, this vector equation can be decomposed into a sum of two distinct terms, akin to the well-known Poynting vector decomposition into orbital and spin currents.

View Article and Find Full Text PDF

The concept of lateral optical force (LOF) is of general interest in optical manipulation as it releases the constraint of intensity gradient in tightly focused light, yet such a force is normally limited to exotic materials and/or complex light fields. Here, we report a general and controllable LOF in a nonchiral elongated nanoparticle illuminated by an obliquely incident plane wave. Through computational analysis, we reveal that the sign and magnitude of LOF can be tuned by multiple parameters of the particle (aspect ratio, material) and light (incident angle, direction of linear polarization, wavelength).

View Article and Find Full Text PDF

The momentum carried by structured light fields exhibits a rich array of surprising features. In this work, we generate transverse orbital angular momentum (TOAM) in the interference field of two parallel and counter-propagating linearly-polarised focused beams, synthesising an array of identical handedness vortices carrying intrinsic TOAM. We explore this structured light field using an optomechanical sensor, consisting of an optically levitated silicon nanorod, whose rotation is a probe of the optical angular momentum, which generates an exceptionally large torque.

View Article and Find Full Text PDF

Cold spots are sub-wavelength regions which might emerge near a nanoantenna, should one or more components of some far-field illumination cancel out with scattered light. We show that by changing only the polarisation, amplitude, and phase of two plane waves, a unique, zero-magnitude and highly sub-wavelength cold spot can be created and moved anywhere in the space around a nanoantenna of any arbitrary shape. This can be achieved using ultra-fast modulated pulses, or a time-harmonic approximation.

View Article and Find Full Text PDF

Optically induced magnetic resonances in nonmagnetic media have unlocked magnetic light-matter interactions and led to new technologies in many research fields. Previous proposals for the levitation of nanoscale particles without structured illumination have worked on the basis of epsilon-near-zero surfaces or anisotropic materials, but these materials carry with them significant fabrication difficulties. We report the optical levitation of a magnetic dipole over a wide range of realistic materials, including bulk metals, thereby relieving these difficulties.

View Article and Find Full Text PDF

While free electrons in metals respond to ultrafast excitation with refractive index changes on femtosecond time scales, typical relaxation mechanisms occur over several picoseconds, governed by electron-phonon energy exchange rates. Here, we propose tailoring these intrinsic rates by engineering a non-uniform electron temperature distribution through nanostructuring, thus, introducing an additional electron temperature relaxation channel. We experimentally demonstrate a sub-300 fs switching time due to the wavelength dependence of the induced hot electron distribution in the nanostructure.

View Article and Find Full Text PDF

The electromagnetic field scattered by nano-objects contains a broad range of wavevectors and can be efficiently coupled to waveguided modes. The dominant contribution to scattering from subwavelength dielectric and plasmonic nanoparticles is determined by electric and magnetic dipolar responses. Here, we experimentally demonstrate spectral and phase selective excitation of Janus dipoles, sources with electric and magnetic dipoles oscillating out of phase, in order to control near-field interference and directional coupling to waveguides.

View Article and Find Full Text PDF

We propose a method for ultrasensitive displacement and phase measurements based on a nanoantenna illuminated with interfering evanescent waves. We show that with a proper nanoantenna design, tiny displacements and relative phase variations can be converted into changes of the scattering direction in the Fourier space. These sensitive changes stem from the strong position dependence of the orientation of the purely imaginary Poynting vector produced in the interference pattern of evanescent waves.

View Article and Find Full Text PDF

Study of photonic spin-orbital interactions, which involves control of the propagation and spatial distributions of light via its polarization, is not only important at the fundamental level but also has significant implications for functional photonic applications that require active tuning of directional light propagation. Many of the experimental demonstrations have been attributed to the spin-momentum locking characteristic of evanescent waves. In this Letter, we show another property of evanescent waves: the polarization-dependent direction of the imaginary part of the Poynting vector, i.

View Article and Find Full Text PDF

Unidirectional scattering from circularly polarized dipoles has been demonstrated in near-field optics, where the quantum spin-Hall effect of light translates into spin-momentum locking. By considering the whole electromagnetic field, instead of its spin component alone, near-field directionality can be achieved beyond spin-momentum locking. This unveils the existence of the Janus dipole, with side-dependent topologically protected coupling to waveguides, and reveals the near-field directionality of Huygens dipoles, generalizing Kerker's condition.

View Article and Find Full Text PDF

Nonreciprocity and one-way propagation of optical signals are crucial for modern nanophotonic technology, and typically achieved using magneto-optical effects requiring large magnetic biases. Here we suggest a fundamentally novel approach to achieve unidirectional propagation of surface plasmon-polaritons (SPPs) at metal-dielectric interfaces. We employ a direct electric current in metals, which produces a Doppler frequency shift of SPPs due to the uniform drift of electrons.

View Article and Find Full Text PDF

Anomalous dispersion is a surprising phenomenon associated with wave propagation in an even number of space dimensions. In particular, wave pulses propagating in two-dimensional space change shape and develop a tail even in the absence of a dispersive medium. We show mathematically that this dispersion can be eliminated by considering a modified wave equation with two geometric spatial dimensions and, unconventionally, two timelike dimensions.

View Article and Find Full Text PDF

We study the lateral Casimir force experienced by a particle that rotates near a planar surface. The origin of this force lies in the symmetry breaking induced by the particle rotation in the vacuum and thermal fluctuations of its dipole moment, and therefore, in contrast to lateral Casimir forces previously described in the literature for corrugated surfaces, it exists despite the translational invariance of the planar surface. Working within the framework of fluctuational electrodynamics, we derive analytical expressions for the lateral force and analyze its dependence on the geometrical and material properties of the system.

View Article and Find Full Text PDF

Full measurement of the polarization of light at the nanoscale is expected to be crucial in many scientific and technological disciplines. Ideally, such measurements will require miniaturized Stokes polarimeters able to determine polarization nondestructively, locally, and in real time. For maximum robustness in measurement, the polarimeters should also operate optimally.

View Article and Find Full Text PDF

Reduction of adhesion and stiction is crucial for robust operation on nanomechanical and optofluidic devices as well as atom and molecule behaviour near surfaces. It can be achieved using electric charging, magnetic materials or light pressure and optical trapping. Here we show that a particle scattering or emitting in close proximity to an anisotropic substrate can experience a repulsive force if one of the diagonal components of the permittivity tensor is close to zero.

View Article and Find Full Text PDF

Optical forces allow manipulation of small particles and control of nanophotonic structures with light beams. While some techniques rely on structured light to move particles using field intensity gradients, acting locally, other optical forces can 'push' particles on a wide area of illumination but only in the direction of light propagation. Here we show that spin-orbit coupling, when the spin of the incident circularly polarized light is converted into lateral electromagnetic momentum, leads to a lateral optical force acting on particles placed above a substrate, associated with a recoil mechanical force.

View Article and Find Full Text PDF

The spin Hall effect leads to the separation of electrons with opposite spins in different directions perpendicular to the electric current flow because of interaction between spin and orbital angular momenta. Similarly, photons with opposite spins (different handedness of circular light polarization) may take different trajectories when interacting with metasurfaces that break spatial inversion symmetry or when the inversion symmetry is broken by the radiation of a dipole near an interface. Here we demonstrate a reciprocal effect of spin-orbit coupling when the direction of propagation of a surface plasmon wave, which intrinsically has unusual transverse spin, determines a scattering direction of spin-carrying photons.

View Article and Find Full Text PDF

Intuitively, light impinging on a spatially mirror-symmetric object will be scattered equally into mirror-symmetric directions. This intuition can fail at the nanoscale if the polarization of the incoming light is properly tailored, as long as mirror symmetry is broken in the axes perpendicular to both the incident wave vector and the remaining mirror-symmetric direction. The unidirectional excitation of plasmonic modes using circularly polarized light has been recently demonstrated.

View Article and Find Full Text PDF

The routing of light in a deep subwavelength regime enables a variety of important applications in photonics, quantum information technologies, imaging and biosensing. Here we describe and experimentally demonstrate the selective excitation of spatially confined, subwavelength electromagnetic modes in anisotropic metamaterials with hyperbolic dispersion. A localized, circularly polarized emitter placed at the boundary of a hyperbolic metamaterial is shown to excite extraordinary waves propagating in a prescribed direction controlled by the polarization handedness.

View Article and Find Full Text PDF

The ability to manufacture metamaterials with exotic electromagnetic properties has potential for surprising new applications. Here we report how a specific type of metamaterial--one whose permittivity is near zero--exerts a repulsive force on an electric dipole source, resulting in levitation of the dipole. The phenomenon relies on the expulsion of the time-varying electric field from the metamaterial interior, resembling the perfect diamagnetic expulsion of magnetostatic fields.

View Article and Find Full Text PDF

One of the basic functionalities of photonic devices is the ability to manipulate the polarization state of light. Polarization components are usually implemented using the retardation effect in natural birefringent crystals and, thus, have a bulky design. Here, we have demonstrated the polarization manipulation of light by employing a thin subwavelength slab of metamaterial with an extremely anisotropic effective permittivity tensor.

View Article and Find Full Text PDF