Publications by authors named "Rodriguez-Cabello J"

Current models for elastin-like recombinamer (ELR) design struggle to predict the effects of nonprotein fused materials on polypeptide conformation and temperature-responsive properties. To address this shortage, we investigated the novel functionalization of ELRs with cholesterol (CTA). We employed GROMACS computational molecular dynamic simulations complemented with experimental evidence to validate the predictions.

View Article and Find Full Text PDF

Large bone defects are a significant health problem today with various origins, including extensive trauma, tumours, or congenital musculoskeletal disorders. Tissue engineering, and in particular bone tissue engineering, aims to respond to this demand. As such, we propose a specific model based on Elastin-Like Recombinamers-based click-chemistry hydrogels given their high biocompatibility and their potent on bone regeneration effect conferred by different bioactive sequences.

View Article and Find Full Text PDF

Developing models that accurately mimic the microenvironment of biological structures or processes holds substantial promise for gaining insights into specific biological functions. In the field of tissue engineering and regenerative medicine, models able to capture the precise structural, topographical, and functional complexity of living tissues, prove to be valuable tools for comprehending disease mechanisms, assessing drug responses, and serving as alternatives or complements to animal testing. The choice of the right biomaterial and fabrication technique for the development of these models plays an important role in their functionality.

View Article and Find Full Text PDF

Despite the remarkable progress in the generation of recombinant elastin-like (ELR) hydrogels, further improvements are still required to enhance and control their viscoelasticity, as well as limit the use of expensive chemical reagents, time-consuming processes and several purification steps. To alleviate this issue, the reactivity of carboxylic groups from glutamic (E) acid distributed along the hydrophilic block of an amphiphilic ELR (coded as E50I60) with amine groups has been studied through a one-pot amidation reaction in aqueous solutions, for the first time. By means of this approach, immediate conjugation of E50I60 with molecules containing amine groups has been performed with a high yield, as demonstrated by the H NMR and MALDI-TOF spectroscopies.

View Article and Find Full Text PDF

More than 260 million surgical procedures are performed worldwide each year. Although sutures and staples are widely used to reconnect tissues, they can cause further damage and increase the risk of infection. Bioadhesives have been proposed as an alternative to reconnect tissues.

View Article and Find Full Text PDF
Article Synopsis
  • 3D printing of titanium allows for customized implants, but its bioactivity challenges successful integration in the body.
  • The study explores modifying titanium scaffolds with genetically engineered elastin-like recombinamers (ELRs) to enhance their mechanical properties and promote mesenchymal stem cell activities.
  • Results indicate that scaffolds functionalized with specific ELRs improved cell adhesion and growth, suggesting that further optimization of the ELR properties could enhance the osseointegration of titanium implants.
View Article and Find Full Text PDF

Multicomponent self-assembly offers opportunities for the design of complex and functional biomaterials with tunable properties. Here, we demonstrate how minor modifications in the molecular structures of peptide amphiphiles (PAs) and elastin-like recombinamers (ELs) can be used to generate coassembling tubular membranes with distinct structures, properties, and bioactivity. First, by introducing minor modifications in the charge density of PA molecules (PAK2, PAK3, PAK4), different diffusion-reaction processes can be triggered, resulting in distinct membrane microstructures.

View Article and Find Full Text PDF

The involvement of the extracellular matrix (ECM) in tumor progression has motivated the development of biomaterials mimicking the tumor ECM to develop more predictive cancer models. Particularly, polypeptides based on elastin could be an interesting approach to mimic the ECM due to their tunable properties. Here, we demonstrated that elastin-like recombinamer (ELR) hydrogels can be suitable biomaterials to develop breast cancer models.

View Article and Find Full Text PDF

Healthy regeneration of tissue relies on a well-orchestrated release of growth factors. Herein, we show the use of synthetic glycosaminoglycans for controlled binding and release of growth factors to induce a desired cellular response. First, we screened glycosaminoglycans with growth factors of interest to determine k (association rate constant), k (dissociation rate constant), and K (equilibrium rate constant).

View Article and Find Full Text PDF

Chronic venous insufficiency (CVI) is a leading vascular disease whose clinical manifestations include varicose veins, edemas, venous ulcers, and venous hypertension, among others. Therapies targeting this medical issue are scarce, and so far, no single venous valve prosthesis is clinically available. Herein, we have designed a bi-leaflet transcatheter venous valve that consists of (i) elastin-like recombinamers, (ii) a textile mesh reinforcement, and (iii) a bioabsorbable magnesium stent structure.

View Article and Find Full Text PDF

Background: The clinical teachers' attributes can be grouped into physician competencies, teacher competencies, and personal characteristics. Global performance is considered the clinical teacher's capacity to facilitate an active and stimulating learning process for medical students and a warm, supportive, and pleasant environment.

Aim: To determine which attributes of the clinical teacher influence their global performance from the students' point of view.

View Article and Find Full Text PDF

Spatiotemporal control of vascularization and innervation is a desired hallmark in advanced tissue regeneration. For this purpose, we design a 3D model scaffold, based on elastin-like recombinamer (ELR) hydrogels. This contains two interior and well-defined areas, small cylinders, with differentiated bioactivities with respect to the bulk.

View Article and Find Full Text PDF

Understanding the interplay between order and disorder in intrinsically disorder proteins (IDPs), and its impact on the properties and features of materials manufactured from them, is a major challenge in the design of protein-based synthetic polymers intended for advanced functions. In this paper an elastin-like diblock co-recombinamer amphiphile (Phe-ELR) based on a hydrophobic block containing five phenylalanine (Phe) residues proximal to the carboxyl function of a glutamic acid (Glu) residue upon folding, and with Glu as the guest residue in the hydrophilic part, was engineered and its assembly behaviour compared with another amphiphilic ELR used as control. Phe-ELR was tailored in order to clarify the impact of the presence of aromatic residues in the amino acid sequence, which even in early studies by Urry's group already demonstrated a certain out-of-trend behaviour compared with other apolar amino acids, especially non-aromatic ones, on ELR behaviour.

View Article and Find Full Text PDF

Design and fabrication of implants that can perform better than autologous bone grafts remain an unmet challenge for the hard tissue regeneration in craniomaxillofacial applications. Here, we report an integrated approach combining additive manufacturing with supramolecular chemistry to develop acellular mineralizing 3D printed scaffolds for hard tissue regeneration. Our approach relies on an elastin-like recombinamer (ELR) coating designed to trigger and guide the growth of ordered apatite on the surface of 3D printed nylon scaffolds.

View Article and Find Full Text PDF

Hindlimb ischemia is an unmet medical need, especially for those patients unable to undergo vascular surgery. Cellular therapy, mainly through mesenchymal stromal cell (MSC) administration, may be a potentially attractive approach in this setting. In the current work, we aimed to assess the potential of the combination of MSCs with a proangiogenic elastin-like recombinamer (ELR)-based hydrogel in a hindlimb ischemia murine model.

View Article and Find Full Text PDF

Purpose: Degenerative mechanisms of retinal neurodegenerative diseases (RND) share common cellular and molecular signalization pathways. Curative treatment does not exist and cell-based therapy, through the paracrine properties of mesenchymal stem cells (MSC), is a potential unspecific treatment for RND. This study aimed to evaluate the neuroprotective capability of human bone marrow (bm) MSC secretome and its potential to modulate retinal responses to neurodegeneration.

View Article and Find Full Text PDF

Retinal neurodegenerative diseases are the leading causes of visual impairment and irreversible blindness worldwide. Although the retinal response to injury remains closely similar between different retinal neurodegenerative diseases, available therapeutic alternatives are only palliative, too expensive, or very specific, such as gene therapy. In that sense, the development of broad-spectrum neuroprotective therapies seems to be an excellent option.

View Article and Find Full Text PDF

Cartilage diseases currently affect a high percentage of the world's population. Almost all of these diseases, such as osteoarthritis (OA), cause inflammation of this soft tissue. However, this could be controlled with biomaterials that act as an anti-inflammatory delivery system, capable of dosing these drugs over time in a specific area.

View Article and Find Full Text PDF

The increase in fracture rates and/or problems associated with missing bones due to accidents or various pathologies generates socio-health problems with a very high impact. Tissue engineering aims to offer some kind of strategy to promote the repair of damaged tissue or its restoration as close as possible to the original tissue. Among the alternatives proposed by this specialty, the development of scaffolds obtained from recombinant proteins is of special importance.

View Article and Find Full Text PDF

Elastin-like polymers (ELPs) and their chimeric subfamily the silk elastin-like polymers (SELPs) exhibit a lower critical solvation temperature (LCST) behavior in water which has been extensively studied from theoretical, computational and experimental perspectives. The inclusion of silk domains in the backbone of the ELPs effects the molecular dynamics of the elastin-like domains in response to increased temperature above its transition temperature and confers gelation ability. This response has been studied in terms of initial and long-term changes in structures, however, intermediate transition states have been less investigated.

View Article and Find Full Text PDF

Molecular self-assembly is a spontaneous natural process resulting in highly ordered nano to microarchitectures. We report temperature-independent formation of robust stable membranes obtained by the spontaneous interaction of intrinsically disordered elastin-like polypeptides (ELPs) with short aromatic peptides at temperatures both below and above the conformational transition temperature of the ELPs. The membranes are stable over time and display durability over a wide range of parameters including temperature, pH, and ultrasound energy.

View Article and Find Full Text PDF

Background: Students belonging to sexual and gender diversity experience chronic stress due to stigmatization and discrimination.

Aim: To identify the experiences of lesbian, gay, bisexual, transgender/transsexual, and queer (LGBTQ+) medical students.

Material And Methods: Systematic literature review using the PRISMA protocol in PubMed, ERIC, EMBASE, and LILACS databases.

View Article and Find Full Text PDF
Article Synopsis
  • Intrinsically disordered proteins (IDPs) lack stable structures yet play crucial functional roles by transitioning between ordered and disordered states in response to various factors.
  • Elastin-like polypeptides (ELPs) are synthetic polymers modeled after natural elastin, featuring the pentapeptide (VPGXG) sequence, which contributes to structural disorder due to proline and glycine content.
  • The recombinant nature of elastin-like recombinamers (ELRs) allows for tailored designs with specific bioactive domains, facilitating the self-assembly into functional structures for various applications.
View Article and Find Full Text PDF

Current cutting-edge strategies in biomaterials science are focused on mimicking the design of natural systems which, over millions of years, have evolved to exhibit extraordinary properties. Based on this premise, one of the most challenging tasks is to imitate the natural extracellular matrix (ECM), due to its ubiquitous character and its crucial role in tissue integrity. The anisotropic fibrillar architecture of the ECM has been reported to have a significant influence on cell behaviour and function.

View Article and Find Full Text PDF

Material platforms based on interaction between organic and inorganic phases offer enormous potential to develop materials that can recreate the structural and functional properties of biological systems. However, the capability of organic-mediated mineralizing strategies to guide mineralization with spatial control remains a major limitation. Here, we report on the integration of a protein-based mineralizing matrix with surface topographies to grow spatially guided mineralized structures.

View Article and Find Full Text PDF