This research work proposes a synergistic approach to improve implants' performance through the use of porous Ti substrates to reduce the mismatch between Young's modulus of Ti (around 110 GPa) and the cortical bone (20-25 GPa), and the application of a biodegradable, acrylic acid-based polymeric coating to reduce bacterial adhesion and proliferation, and to enhance osseointegration. First, porous commercially pure Ti substrates with different porosities and pore size distributions were fabricated by using space-holder techniques to obtain substrates with improved tribomechanical behavior. On the other hand, a new diacrylate cross-linker containing a reduction-sensitive disulfide bond was synthesized to prepare biodegradable poly(acrylic acid)-based hydrogels with 1, 2, and 4% cross-linker.
View Article and Find Full Text PDFDespite the increasing progress achieved in the last 20 years in both the fabrication of porous dental implants and the development of new biopolymers for targeting drug therapy, there are important issues such as bone resorption, poor osseointegration, and bacterial infections that remain as critical challenges to avoid clinical failure problems. In this work, we present a novel microtechnology based on polycaprolactone microspheres that can adhere to porous titanium implant models obtained by the spacer holder technique to allow a custom biomechanical and biofunctional balance. For this purpose, a double emulsion solvent evaporation technique was successfully employed for the fabrication of the microparticles properly loaded with the antibacterial therapeutic agent, rose bengal.
View Article and Find Full Text PDFIn this work, the fatigue and cellular performance of novel superficially treated porous titanium dental implants made up using conventional powder metallurgy and space-holder techniques (30 vol.% and 50 vol.%, both with a spacer size range of 100-200 µm) are evaluated.
View Article and Find Full Text PDFBone resorption and inadequate osseointegration are considered the main problems of titanium implants. In this investigation, the texture and surface roughness of porous titanium samples obtained by the space holder technique were modified with a femtosecond Yb-doped fiber laser. Different percentages of porosity (30, 40, 50, and 60 vol.
View Article and Find Full Text PDFThe development of protective self-detoxifying materials is an important societal challenge to counteract risk of attacks employing highly toxic chemical warfare agents (CWAs). In this work, we have developed bifunctional zirconium metal-organic frameworks (MOFs) incorporating variable amounts of nucleophilic amino residues by means of formation of the mixed ligand [ZrO(OH)(bdc)(bdc-NH)] (UiO-66-xNH) and [ZrO(OH)(bpdc)(bpdc-(NH))] (UiO-67-x(NH)) systems where bdc = benzene-1,4-dicarboxylate; bdc-NH= benzene-2-amino-1,4-dicarboxylate; bpdc = 4,4'-biphenyldicarboxylate; bpdc-(NH) = 2,2'-diamino-4,4'-biphenyldicarboxylate and x = 0, 0.25, 0.
View Article and Find Full Text PDFThe widespread emissions of toxic gases from fossil fuel combustion represent major welfare risks. Here we report the improvement of the selective sulfur dioxide capture from flue gas emissions of isoreticular nickel pyrazolate metal organic frameworks through the sequential introduction of missing-linker defects and extra-framework barium cations. The results and feasibility of the defect pore engineering carried out are quantified through a combination of dynamic adsorption experiments, X-ray diffraction, electron microscopy and density functional theory calculations.
View Article and Find Full Text PDFA new hierarchical MOF consisting of Cu(II) centers connected by benzene-tricarboxylates (BTC) is prepared by thermoinduced solid transformation of a dense CuBTC precursor phase. The mechanism of the material formation has been thoroughly elucidated and revealed a transformation of a ribbon-like 1D building unit into 2D layers and finally a 3D network. The new phase contains excess copper, charge compensated by systematic hydroxyl groups, which leads to an open microporous framework with tunable permanent mesoporosity.
View Article and Find Full Text PDFTuning the electronic structure of metal-organic frameworks is the key to extending their functionality to the photocatalytic conversion of absorbed gases. Herein we discuss how the band edge positions in zeolitic imidazolate frameworks (ZIFs) can be tuned by mixing different imidazole-based linkers within the same structure. We present the band alignment for a number of known and hypothetical Zn-based ZIFs with respect to the vacuum level.
View Article and Find Full Text PDFThe current technology of air-filtration materials for protection against highly toxic chemicals, that is, chemical-warfare agents, is mainly based on the broad and effective adsorptive properties of hydrophobic activated carbons. However, adsorption does not prevent these materials from behaving as secondary emitters once they are contaminated. Thus, the development of efficient self-cleaning filters is of high interest.
View Article and Find Full Text PDFFour coordination networks based on the {ε-PMo(V)(8)Mo(VI)(4)O(40)(OH)(4)Zn(4)} Keggin unit (εZn) have been synthesized under hydrothermal conditions. (TBA)(3){PMo(V)(8)Mo(VI)(4)O(36)(OH)(4)Zn(4)}[C(6)H(4)(COO)(2)](2) (ε(isop)(2)) is a 2D material with monomeric εZn units connected via 1,3 benzenedicarboxylate (isop) linkers and tetrabutylammonium (TBA) counter-cations lying between the planes. In (TPA)(3){PMo(V)(8)Mo(VI)(4)O(37)(OH)(3)Zn(4)}[C(6)H(3)(COO)(3)] (TPA[ε(trim)](∞)), 1D inorganic chains formed by the connection of εZn POMs, via Zn-O bonds, are linked via 1,3,5 benzenetricarboxylate (trim) ligands into a 2D compound with tetrapropylammonium (TPA) cations as counter-cations.
View Article and Find Full Text PDFWe report the synthesis and characterization of eight new Mo, W, or V-containing polyoxometalate (POM) bisphosphonate complexes with metal nuclearities ranging from 1 to 6. The compounds were synthesized in water by treating Mo(VI), W(VI), V(IV), or V(V) precursors with biologically active bisphosphonates H(2)O(3)PC(R)(OH)PO(3)H(2) (R = C(3)H(6)NH(2), Ale; R = CH(2)S(CH(3))(2), Sul and R = C(4)H(5)N(2), Zol, where Ale = alendronate, Sul = (2-Hydroxy-2,2-bis-phosphono-ethyl)-dimethyl-sulfonium and Zol = zoledronate). Mo(6)(Sul)(2) and Mo(6)(Zol)(2) contain two trinuclear Mo(VI) cores which can rotate around a central oxo group while Mo(Ale)(2) and W(Ale)(2) are mononuclear species.
View Article and Find Full Text PDFThe grafting of the triangular 1,3,5-benzene tricarboxylate linkers (denoted trim) on tetrahedral ε-Keggin polyoxometalates (POMs) capped by Zn(II) ions, formed in situ under hydrothermal conditions, has generated three novel POM-based metal organic frameworks (POMOFs). (TBA)(3)[PMo(V)(8)Mo(VI)(4)O(36)(OH)(4)Zn(4)][C(6)H(3)(COO)(3)](4/3)·6H(2)O (ε(trim)(4/3)) is a 3D open-framework built of molecular Keggin units connected by trim linkers, with channels occupied by tetrabutylammonium (TBA) counterions. ε(trim)(4/3) is a novel (3,4)-connected net, named ofp for open-framework polyoxometalate, and computer simulations have been used to evaluate its relative stability in comparison with ctn- and bor-like polymorphs, showing the stability of this novel phase directly related to its greatest density.
View Article and Find Full Text PDFWe investigate here a new family of zeolitic Metal Organic Frameworks (MOFs) based on imidazole (im) as the ligand and epsilon-type Keggin PolyOxoMetalates (POMs) as building units. The POM used in this study is the epsilon-{PMo(12)O(40)} Keggin isomer capped by four Zn(ii) ions (noted epsilon-Zn) in tetrahedral coordination. We describe here our methods to first construct and then evaluate the stability of hypothetical 3-D POMOFs possessing a tetrahedral network, typified by dense silica polymorphs and zeotypes and referred here to as Z-POMOFs.
View Article and Find Full Text PDFThe targeted design and simulation of a new family of zeolitic metal-organic frameworks (MOFs) based on benzenedicarboxylate (BDC) as the ligand and epsilon-type Keggin polyoxometalates (POMs) as building units, named here Z-POMOFs, have been performed. A key feature is the use of the analogy between the connectivity of silicon in dense minerals and zeolites with that of the epsilon-type Keggin POMs capped with Zn(II) ions. Handling the epsilon-Keggin as a building block, a selection of 21 zeotype structures, together with a series of dense minerals were constructed and their relative stabilities computed.
View Article and Find Full Text PDF