Publications by authors named "Rodrigo Torres Saez"

Microbial infections resistant to conventional antibiotics constitute one of the most important causes of mortality in the world. In some bacterial species, such as and pathogens, biofilm formation can favor their antimicrobial resistance. These biofilm-forming bacteria produce a compact and protective matrix, allowing their adherence and colonization to different surfaces, and contributing to resistance, recurrence, and chronicity of the infections.

View Article and Find Full Text PDF

This work presents modelling of an anaerobic biofilm reactor using ceramic bricks as support. The results were compared with the experimental data. It was observed that the substrate concentration curves showed the same tendency.

View Article and Find Full Text PDF

Nowadays, current advances in nanotechnology constitute a promising alternative in the development of new antimicrobial agents. Silver nanoparticles (AgNPs) are some very interesting products currently provided by available nanotechnology for control of microbial infection. In the present study, AgNPs were synthesized by eco-friendly method, using cysteine as a reducing agent.

View Article and Find Full Text PDF

Flux balance analysis (FBA) is currently one of the most important and used techniques for estimation of metabolic reaction rates (fluxes). This mathematical approach utilizes an optimization criterion in order to select a distribution of fluxes from the feasible space delimited by the metabolic reactions and some restrictions imposed over them, assuming that cellular metabolism is in steady state. Therefore, the obtained flux distribution depends on the specific objective function used.

View Article and Find Full Text PDF

Background: The main objective of flux balance analysis (FBA) is to obtain quantitative predictions of metabolic fluxes of an organism, and it is necessary to use an appropriate objective function to guarantee a good estimation of those fluxes.

Methodology: In this study, the predictive performance of FBA was evaluated, using objective functions arising from the linear combination of different cellular objectives. This approach is most suitable for eukaryotic cells, owing to their multiplicity of cellular compartments.

View Article and Find Full Text PDF