Publications by authors named "Rodrigo T Ribeiro"

Cationic and hydrophilic coatings based on casting and drying water dispersions of two different nanoparticles (NPs) onto glass are here described and evaluated for antimicrobial activity. Discoid cationic bilayer fragments (BF) surrounded by carboxy-methylcellulose (CMC) and poly (diallyl dimethyl ammonium) chloride (PDDA) NPs and spherical gramicidin D (Gr) NPs dispersed in water solution were cast onto glass coverslips and dried, forming a coating quantitatively evaluated against , and . From plating and colony forming units (CFU) counting, all strains interacting for 1 h with the coatings lost viability from 10 to 10, to zero CFU, at two sets of Gr and PDDA doses: 4.

View Article and Find Full Text PDF

Gramicidin (Gr) nanoparticles (NPs) and poly (diallyl dimethyl ammonium) chloride (PDDA) water dispersions were characterized and evaluated against Gram-positive and Gram-negative bacteria and fungus. Dynamic light scattering for sizing, zeta potential analysis, polydispersity, and colloidal stability over time characterized Gr NPs/PDDA dispersions, and plating and colony-forming units counting determined their microbicidal activity. Cell viabilities of , , and in the presence of the combinations were reduced by 6, 7, and 7 logs, respectively, at 10 μM Gr/10 μg·mL PDDA, 0.

View Article and Find Full Text PDF

Hybrid and antimicrobial nanoparticles (NPs) of poly (methyl methacrylate) (PMMA) in the presence of poly (diallyl dimethyl ammonium) chloride (PDDA) were previously obtained by emulsion polymerization in absence of surfactant with low conversion. In the presence of amphiphiles such as cetyl trimethyl ammonium bromide (CTAB), dioctadecyl dimethyl ammonium bromide (DODAB) or soybean lecithin, we found that conversion increased substantially. In this work, the effect of the amphiphiles on the NPs core-shell structure and on the antimicrobial activity of the NPs was evaluated.

View Article and Find Full Text PDF

Hybrid nanoparticles of poly(methylmethacrylate) synthesized in the presence of poly (diallyldimethyl ammonium) chloride by emulsion polymerization exhibited good colloidal stability, physical properties, and antimicrobial activity but their synthesis yielded poor conversion. Here we create antimicrobial coatings from casting and drying of the nanoparticles dispersions onto model surfaces such as those of silicon wafers, glass coverslips, or polystyrene sheets and optimize conversion using additional stabilizers such as cetyltrimethyl ammonium bromide, dioctadecyldimethyl ammonium bromide, or soybean lecithin during nanoparticles synthesis. Methodology included dynamic light scattering, determination of wettability, ellipsometry of spin-coated films, scanning electron microscopy, and determination of colony forming unities (log CFU/mL) of bacteria after 1 h interaction with the coatings.

View Article and Find Full Text PDF

The optimization of bilayer coverage on particles is important for a variety of biomedical applications, such as drug, vaccine, and genetic material delivery. This work aims at optimizing the deposition of cationic bilayers on silica over a range of experimental conditions for the intervening medium and two different assemblies for the cationic lipid, namely, lipid films or pre-formed lipid bilayer fragments. The lipid adsorption on silica in situ over a range of added lipid concentrations was determined from elemental analysis of carbon, hydrogen, and nitrogen and related to the colloidal stability, sizing, zeta potential, and polydispersity of the silica/lipid nanoparticles.

View Article and Find Full Text PDF