Publications by authors named "Rodrigo Simoes Ribeiro Leite"

The aim of this study was to evaluate the physiology of 13 yeast strains by assessing their kinetic parameters under anaerobic conditions. They included Saccharomyces cerevisiae CAT-1 and 12 isolated yeasts from different regions in Brazil. The study aimed to enhance understanding of the metabolism of these strains for more effective applications.

View Article and Find Full Text PDF

The search for promising yeasts that surpass the fermentative capacity of commercial strains, such as CAT-1, is of great importance for industrial ethanol processes in the world. Two yeasts, BB2 and BB9, were evaluated in comparison to the industrial yeast CAT-1. The objective was to evaluate the performance profile of the three studied strains in terms of growth, substrate consumption, and metabolite formation, aiming to determine their behaviour in different media and pH conditions.

View Article and Find Full Text PDF

FT858 is an industrial yeast strain with high fermentative efficiency, but marginally studied so far. The aim of this work was to evaluate the biotechnological potential of FT858 through kinetic growth parameters, and the influence of the concentration of the substrate on the synthesis of the invertase enzyme. Invertases have a high biotechnological potential and their production through yeast is strongly influenced by the sugars in the medium.

View Article and Find Full Text PDF

The objective of the present study was to optimize parameters for the cultivation of Lichtheimia corymbifera (mesophilic) and Byssochlamys spectabilis (thermophilic) for the production of β-glucosidases and to compare the catalytic and thermodynamic properties of the partially purified enzymes. The maximum amount of β-glucosidase produced by L. corymbifera was 39 U/g dry substrate (or 3.

View Article and Find Full Text PDF

Invertases are used for several purposes; one among these is the production of fructooligosaccharides. The aim of this study was to biochemically characterize invertase from industrial Saccharomyces cerevisiae CAT-1 and Rhodotorula mucilaginosa isolated from Cerrado soil. The optimum pH and temperature were 4.

View Article and Find Full Text PDF

Amylases catalyze the hydrolysis of starch, a vegetable polysaccharide abundant in nature. These enzymes can be utilized in the production of syrups, alcohol, detergent, pharmaceutical products, and animal feed formulations. The aim of this study was to optimize the production of amylases by the filamentous fungus by solid-state fermentation and to evaluate the catalytic properties of the obtained enzymatic extract.

View Article and Find Full Text PDF

The present study compared the production and the catalytic properties of amylolytic enzymes obtained from the fungi Lichtheimia ramosa (mesophilic) and Thermoascus aurantiacus (thermophilic). The highest amylase production in both fungi was observed in wheat bran supplemented with nutrient solution (pH 4.0) after 96 hours of cultivation, reaching 417.

View Article and Find Full Text PDF

Peptidases are important because they play a central role in pharmaceutical, food, environmental, and other industrial processes. A serine peptidase from Aspergillus terreus was isolated after two chromatography steps that showed a yield of 15.5%.

View Article and Find Full Text PDF

In this paper, several agro-industrial wastes (soybean meal and wheat straw, rice and peanut husks, corn cob and corn stover, and sugarcane bagasse) were tested for the production of β-glucosidase by the cultivation of thermophilic fungus Thermomucor indicae-seudaticae N31 in solid-state fermentation (SSF). Among the tested substrates, the highest yields were obtained in soybean meal. Other fermentation parameters were also evaluated, such as initial pH, merge substrates, and fermentation time, as well as the physicochemical characterization of the enzyme.

View Article and Find Full Text PDF

Polygalacturonases are enzymes involved in the degradation of pectic substances, being extensively used in food industries, textile processing, degumming of plant rough fibres, and treatment of pectic wastewaters. Polygalacturonase (PG) production by thermophilic fungus Thermoascus aurantiacus on solid-state fermentation was carried out in culture media containing sugar cane bagasse and orange bagasse in proportions of 30% and 70% (w/w) at 45°C for 4 days. PG obtained was purified by gel filtration and ion-exchange chromatography.

View Article and Find Full Text PDF

Due to the amount of nutrients available in the agroindustrial wastes, these can be converted into high added-value products by the action of microorganisms in solid-state bioprocesses. The aim of this work was to evaluate the growth physiology and lipase production of the fungus Lichtheimia ramosa using the following Brazilian savannah fruit wastes as substrates: bocaiuva (Acrocomia aculeata), pequi (Caryocar brasiliense), guavira (Campomanesia pubescens), araticum (Annona crassiflora) and seriguela (Spondias purpurea). These residues were triturated, homogenized, adjusted to pH 5.

View Article and Find Full Text PDF

An exo-PG obtained from Penicillium viridicatum in submerged fermentation was purified to homogeneity. The apparent molecular weight of the enzyme was 92 kDa, optimum pH and temperature for activity were pH 5 and 50-55 degrees C. The exo-PG showed a profile of an exo-polygalacturonase, releasing galacturonic acid by hydrolysis of pectin with a high degree of esterification (D.

View Article and Find Full Text PDF

Hemicelluloses are polysaccharides of low molecular weight containing 100 to 200 glycosidic residues. In plants, the xylans or the hemicelluloses are situated between the lignin and the collection of cellulose fibers underneath. The xylan is the most common hemicellulosic polysaccharide in cell walls of land plants, comprising a backbone of xylose residues linked by beta-1,4-glycosidic bonds.

View Article and Find Full Text PDF

This article investigates a strain of the yeast Aureobasidium pullulans for cellulase and hemicellulase production in solid state fermentation. Among the substrates analyzed, the wheat bran culture presented the highest enzymatic production (1.05 U/mL endoglucanase, 1.

View Article and Find Full Text PDF