Publications by authors named "Rodrigo Serna-Guerrero"

The recycling of spent lithium-ion batteries (LIBs) is crucial to sustainably manage resources and protect the environment as the use of portable electronics and electric vehicles (EVs) increases. However, the safe recycling of spent LIBs is challenging, as they often contain residual energy. Left untreated, this can trigger a thermal runaway and result in disasters during the recycling process.

View Article and Find Full Text PDF

While there has been a growing interest on the concept of Circular Economy (CE), its correlation with sustainability remains controversial. In this work, the combination of Statistical Entropy Analysis (SEA) and Life Cycle Assessment (LCA) is proposed as a new methodology to evaluate recycling processes from the perspective of materials circularity and environmental impacts using a Li-ion battery recycling process as a case study. This work addresses the need of quantitative circularity indicators, as SEA evaluates the concentration of materials at a systems level, while LCA measures the environmental impact of recycling processes in comparison with virgin raw materials production.

View Article and Find Full Text PDF

The growing electric vehicle industry has increased the demand for raw materials used in lithium-ion batteries (LIBs), raising concerns about material availability. Froth flotation has gained attention as a LIB recycling method, allowing the recovery of low value materials while preserving the chemical integrity of electrode materials. Furthermore, as new battery chemistries such as lithium titanate (LTO) are introduced into the market, strategies to treat mixed battery streams are needed.

View Article and Find Full Text PDF

Recycling processes are an important stage in the raw material life cycle, as it enables the transition from a linear economy into a circular one. However, the currently available indicators of productivity in recycling technologies respond to the needs of a linear economy. In this work, a parameter called "exentropy" is proposed, offering the possibility to simultaneously account for mass preservation and the energy efficiency of transformative stages.

View Article and Find Full Text PDF

A new method based on thermogravimetric analysis was developed to measure the graphite content in battery material mixture. This approach exploits the thermochemical reduction of cathodic Li-transition metal oxides with anodic graphite at elevated temperatures under an inert atmosphere. Using known composition artificial mixtures, a linear correlation between cathode mass loss and sample graphite content was observed.

View Article and Find Full Text PDF

The majority of reagents currently used in mineral flotation processes are fossil-based and potentially harmful to the environment. Therefore, it is necessary to find environmentally-friendly alternatives to reduce the impact of mineral processing activities. Chitin nanocrystals are a renewable resource that, due to the natural presence of amino groups on its surface, represents a promising collector for various minerals of economic relevance.

View Article and Find Full Text PDF

In the search for more sustainable alternatives to the chemical reagents currently used in froth flotation, the present work offers further insights into the behavior of functionalized cellulose nanocrystals as mineral hydrophobization agents. The study corroborates that hexylamine cellulose nanocrystals (HACs) are an efficient collector for the flotation of quartz and also identifies some particular characteristics as a result of their colloidal nature, as opposed to the water-soluble reagents conventionally used. To investigate the individual and collective effects of the frother and HACs on the attachment of particles and air bubbles, an automated contact timer apparatus was used.

View Article and Find Full Text PDF

Recently, the production of well-defined patterned surfaces with random or regular micro and nano-features has brought new opportunities for research and development in the field of tissue engineering and regenerative medicine. Among advanced micro and nano processing technologies, laser surface texturing (LST) stands out due to its simplicity, flexibility, precision, reproducibility and relatively low cost. This work studies the development of patterned surfaces controlled by of LST into biomedical grade V titanium, Ti-6Al-4V-alloy.

View Article and Find Full Text PDF

Currently, the first generation of solar panels are reaching their end-of-life, however so far, there is no best available technology (BAT) to deal with solar panel waste in terms of the optimized circular economy of metals. In this brief communication, electro-hydraulic fragmentation (EHF) is explored as an initial conditioning stage of photovoltaic (PV) modules to facilitate the recovery of valuable metals with the main goal to produce liberated fractions that are suitable for the retrieval of materials like Si, Ag, Cu, Sn, Pb, and Al. When compared to traditional crushing, the results suggest that dismantling of PV panels using EHF shows more selectivity by concentrating metals among well-defined particle size fractions.

View Article and Find Full Text PDF

The removal of sulfidic species in tailings using froth flotation is a promising approach to prevent phenomena such as acid mine drainage. However, flotation requires the consumption of reagents and water that represent additional expenses. Despite the strong interest of scientists and industry alike on tailings remediation, there is no study on the minimization of resource consumption to promote the implementation of desulfurization with froth flotation.

View Article and Find Full Text PDF

The use of lithium-ion batteries (LIB) has grown significantly in recent years, making them a promising source of secondary raw materials due to their rich composition of valuable materials such as Co, Ni and Al. However, the high voltage and reactive components of LIBs pose safety hazards during crushing stages in recycling processes, and during storage and transportation. Electrochemical discharge by immersion of spent batteries in salt solutions has been generally accepted as a robust and straightforward discharging step to address these potential hazards.

View Article and Find Full Text PDF

Three different varieties of mesoporous silicas were synthesized by varying the postsynthesis treatment of an as-synthesized ordered mesoporous material type MCM-41. The resulting materials consisted of a purely siliceous MCM-41, a pore-expanded MCM-41 (PE-MCM-41C), and a surfactant-laden pore-expanded MCM-41 (PE-MCM-41E) and were evaluated as adsorbents for two types of volatile organic compounds, i.e.

View Article and Find Full Text PDF