Publications by authors named "Rodrigo S Vieira"

Objective: To evaluate the feasibility of adding mechanical insufflation-exsufflation (MI-E) to a weaning protocol for tracheostomized patients undergoing prolonged mechanical ventilation (MV).

Design: Single-center, open-label, randomized, controlled pilot and feasibility study.

Setting: Intensive care unit in Brazil.

View Article and Find Full Text PDF

This research consolidates our group's advances in developing a therapeutic dressing with innovative enzymatic debridement, focusing on the physicochemical and in vitro biological properties of papain immobilized in wet oxidized bacterial cellulose (OxBC-Papain) dressing. OxBC membranes were produced with oxidized with NaIO, and papain was immobilized on them. They were characterized in terms of enzyme stability (over 100 days), absorption capacity, water vapor transmission (WVT), hemocompatibility, cytotoxicity, and cell adhesion.

View Article and Find Full Text PDF

Bacterial cellulose (BC), produced by bacterial fermentation, is a high-purity material. BC can be oxidized (BCOXI), providing aldehyde groups for covalent bonds with drugs. Frutalin (FTL) is a lectin capable of modulating cell proliferation and remodeling, which accelerates wound healing.

View Article and Find Full Text PDF

Bacterial cellulose (BC) represents a promising biomaterial, due to its unique and versatile properties. We report, herein, on purposely-designed structural modifications of BC that enhance its application as a wound dressing material. Chemical modification of the functional groups of BC was performed initially to introduce a hydrophobic/oleophilic character to its surface.

View Article and Find Full Text PDF

The solvent-free esterification of the free fatty acids (FFAs) obtained by the hydrolysis of castor oil (a non-edible vegetable oil) with 2-ethyl-1-hexanol (a branched fatty alcohol) was catalyzed by different free lipases. Eversa Transform 2.0 (ETL) features surpassed most commercial lipases.

View Article and Find Full Text PDF

Objective: Oral candidiasis is a common fungal infection that affects the oral mucosa, and happens when Candida albicans interacts with bacteria in the oral microbiota, such as Streptococcus mutans, causing severe early childhood caries. C. albicans and S.

View Article and Find Full Text PDF

The increasing worries by the inadequate use of energy and the preservation of nature are promoting an increasing interest in the production of biolubricants. After discussing the necessity of producing biolubricants, this review focuses on the production of these interesting molecules through the use of lipases, discussing the different possibilities (esterification of free fatty acids, hydroesterification or transesterification of oils and fats, transesterification of biodiesel with more adequate alcohols, estolides production, modification of fatty acids). The utilization of discarded substrates has special interest due to the double positive ecological impact (e.

View Article and Find Full Text PDF

Electrospinning technology was used to produced polyvinylpyrrolidone (PVP)-copper salt composites with structural differences, and their virucidal activity against coronavirus was investigated. The solutions were prepared with 20, 13.3, 10, and 6.

View Article and Find Full Text PDF

This review summarizes the most relevant advances in the biological transformation of fatty acids (or derivatives) into hydrocarbons to be used as biofuels (biogasoline, green diesel and jet biofuel). Among the used enzymes, the fatty acid decarboxylase from Jeotgalicoccus sp. ATCC 8456 (OleT) stands out as a promising enzyme.

View Article and Find Full Text PDF

The molecular weight of chitosan (CS) may affect its physical properties and its ability to induce an appropriate host response. The biocompatibilities of CS membranes of low (LMWCS) and high (HMWCS) molecular weight were investigated by inserting these materials into the subcutaneous tissue of rats for 1-28 days and evaluating leukocyte infiltration, granulation tissue, fibrosis, arginase-1 immunostaining, as well as nuclear factor-κB (NF-κΒ) and fibroblast growth factor (FGF)-2 expressions. Both CS membranes induced a peak of leukocyte infiltration on the first day of insertion and stimulated granulation and fibrous tissue generation when compared to control.

View Article and Find Full Text PDF

Objective: To evaluate the association that protective mechanical ventilation (MV), based on VT and maximum distending pressure (MDP), has with mortality in patients at risk for ARDS.

Methods: This was a prospective cohort study conducted in an ICU and including 116 patients on MV who had at least one risk factor for the development of ARDS. Ventilatory parameters were collected twice a day for seven days, and patients were divided into two groups (protective MV and nonprotective MV) based on the MDP (difference between maximum airway pressure and PEEP) or VT.

View Article and Find Full Text PDF

Essential oils (EOs) are bioactive compounds with therapeutic potential for use as alternatives or as support to conventional treatments. However, EOs present limitations, such as sensibility to environmental factors, which can be overcome through microencapsulation. The objective of this study was to produce, by spray drying, chitosan microparticles (CMs) loaded with EO of Lemongrass (Cymbopogon flexuosus), Geranium (Pelargonium x ssp) and Copaiba (Copaifera officinalis).

View Article and Find Full Text PDF

The aim of the study was to produce and characterize chitosan microparticles loaded with essential oils (CMEOs), evaluate the essential oil (EO) release profile and the CMEOs' anti-Candida activity. The chitosan microparticles (CMs) loaded with lemongrass essential oil (LEO) and geranium essential oil (GEO) were produced by the spray-drying method and characterized regarding CMEO morphological and physicochemical parameters and EO encapsulation efficiency (EE) and release profile. The planktonic activity was quantified by broth microdilution, and the activity against biofilm was quantified by biomass formation measurement.

View Article and Find Full Text PDF

We combined the chemical and physical methods of papain immobilization through the aldehyde groups available on oxidized bacterial cellulose (OxBC) to provide high proteolytic activity for future applications as bioactive dressing. Bacterial cellulose (BC) was obtained by the fermentation of Komagataeibacter hansenii in Hestrin-Schramm medium for 5 days, followed by purification and oxidation using NaIO. Surface response methodology was used to optimize papain immobilization (2%, w/v) for 24 h.

View Article and Find Full Text PDF

Hybrid materials, based on bacterial cellulose (BC) and hydroxyapatite (HA), have been investigated for guided bone regeneration (GBR). However, for some GBR, degradability in the physiological environment is an essential requirement. The present study aimed to explore the use of oxidized bacterial cellulose (OxBC) membranes, associated with strontium apatite, for GBR applications.

View Article and Find Full Text PDF

This study aims to produce and characterize alginate bilayer membranes composed of single membranes with varying cross-linking degrees to modulate simvastatin release, with potential to be used for wound-dressing. The single-layer and bilayer membranes were characterized by weight, thickness, surface pH, equilibrium-humidity, swelling degree, solubility, infrared spectroscopy (attenuated total reflectance Fourier-transform infrared), scanning electron microscopy, and water vapor transmission. Simvastatin diffusion and release rates were analyzed using Franz's cells; its indirect cytotoxicity was analyzed using human keratinocyte cells.

View Article and Find Full Text PDF

Wound dressings based on natural polymers are of considerable interest in the pharmaceutical industry owing to their improved performance in the human body when compared to synthetic polymers. Alginate, a polysaccharide from brown algae, is commonly studied as a wound dressing owing to its biocompatibility and biodegradability. To improve its therapeutic features and thereby increase wound healing, papain (a proteolytic enzyme from Carica papaya latex) was proposed to be incorporated.

View Article and Find Full Text PDF

Background: Early exercise has been recommended in critically ill patients, but its impact on subject-ventilator interaction is still unclear. Therefore, the aim of this study was to evaluate the occurrence of subject-ventilator asynchrony during passive exercise in mechanically ventilated subjects.

Methods: This study included deeply sedated subjects who were under mechanical ventilation for < 72 h.

View Article and Find Full Text PDF

Hydroxyapatite-associated bacterial cellulose (BC/HA) is a promising composite for biomedical applications. However, this hybrid composite has some limitations due to its low in vivo degradability. The objective of this work was to oxidize BC and BC/HA composites for different time periods to produce 2,3 dialdehyde cellulose (DAC).

View Article and Find Full Text PDF

Sporotrichosis, caused by Sporothrix schenckii complex species, is the most prevalent subcutaneous mycosis in many areas of Latin America. Chitosan has been used as an antifungal agent; however the effects of the molecular weight (MW) of chitosan (i.e.

View Article and Find Full Text PDF

Difficulties in the treatment of Candida spp. invasive infections are usually related to the formation of biofilms. The aim of this study was to determine the effects of molecular weight (MW) of chitosan (using high (HMW), medium (MMW) and low (LMW) molecular weight chitosan) on Candida albicans, Candida tropicalis and Candida parapsilosis sensu stricto.

View Article and Find Full Text PDF

Chitosan is a naturally occurring polysaccharide obtained from chitin, present in abundance in the exoskeletons of crustaceans and insects. It has aroused great interest as a biomaterial for tissue engineering on account of its biocompatibility and biodegradation and its affinity for biomolecules. A significant number of research groups have investigated the application of chitosan as scaffolds for tissue regeneration.

View Article and Find Full Text PDF

Thrombosis and calcification constitute the main clinical problems when blood-interacting devices are implanted in the body. Coatings with thin polymer layers represent an acknowledged strategy to modulate interactions between the material surface and the blood environment. To ensure the implant success, at short-term the coating should limit platelets adhesion and delay the clot formation, and at long-term it should delay the calcification process.

View Article and Find Full Text PDF

In recent years, great effort has been devoted to the development of biomaterials that come into contact with blood. The surfaces of these materials need to be of suitable mechanical strength, and present anti-thrombogenic and anti-calcification properties. Chitosan is a natural polymer that has attracted attention due to its potential to act as a biomaterial.

View Article and Find Full Text PDF

The catalytic activities of calcium oxide obtained from natural sources (crab shell and eggshell) were characterized and evaluated in the transesterification of vegetable oil. These catalysts are mainly composed of calcium carbonate, which is partially converted into CaO after calcination (900°C for 2h). The catalysts have some advantages, such as abundant occurrence, low cost, porous structure, and nontoxic.

View Article and Find Full Text PDF