Molecules with tripodal anchoring to substrates represent a versatile platform for the fabrication of robust self-assembled monolayers (SAMs), complementing the conventional monopodal approach. In this context, we studied the adsorption of 1,8,13-tricarboxytriptycene (Trip-CA) on Ag(111), mimicked by a bilayer of silver atoms underpotentially deposited on Au. While tripodal SAMs frequently suffer from poor structural quality and inhomogeneous bonding configurations, the triptycene scaffold featuring three carboxylic acid anchoring groups yields highly crystalline SAM structures.
View Article and Find Full Text PDFBinary self-assembled monolayers (SAMs) combining a Y-shaped aromatic carboxylic acid (1,3,5-benzenetribenzoic acid, H3BTB) and a cage-type alicyclic carboxylic acid (adamantane carboxylic acid, AdCA) were investigated by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. The SAMs, prepared by molecular adsorption from solution on Au substrates modified by underpotential deposition of Ag, exhibit a pronounced dependence of their structure on the assembly protocol. Exposing an H3BTB SAM to AdCA, the highly regular row structure of the native H3BTB layer persists and STM imaging does not show signs of AdCA adsorption.
View Article and Find Full Text PDFMonolayers of 4-(2,6-di(1 H-pyrazol-1-yl)pyridine-4-yl)benzoic acid (DPP-BA) on Au substrates modified by an underpotential-deposited bilayer of Ag were studied by X-ray photoelectron spectroscopy (XPS), near edge X-ray absorption fine structure spectroscopy, and scanning tunneling microscopy. Highly crystalline layers are formed with molecules coordinatively bonding to the surface through the carboxylate moiety in a bidentate configuration. The molecules assemble to rows characterized by densely packed upright-orientated DPP units occupying an area of 41 Å.
View Article and Find Full Text PDFAssembly of 1,3,5-benzenetribenzoic acid (H3BTB) from solution on Au substrates modified by underpotential deposited Ag and Cu layers was studied by near edge X-ray absorption fine structure spectroscopy, X-ray photoelectron spectroscopy and scanning tunneling microscopy. Adsorption of H3BTB on Cu resulted in disordered layers with sporadic occurrence of ordered molecular aggregates. In contrast, highly ordered layers were obtained on Ag which exhibit a pronounced row structure and involve a monopodal bidentate adsorption geometry of the molecules through carboxylate coordinating bonding.
View Article and Find Full Text PDF