Publications by authors named "Rodrigo Moruzzi"

This study investigates the effectiveness of coagulation-flocculation and sedimentation (CFS) for separating microalgae, focusing on the use of various Moringa oleifera extracts as natural coagulants. We examined photobioreactor effluent (PBR) both with and without microplastic PVC (MP-PVC) contamination, referred to as PBR R2 and PBR R1, respectively. Utilising response surface methodology, we identified optimal conditions for the removal of microalgae and MP-PVC.

View Article and Find Full Text PDF

The fluvial transport of dissolved inorganic carbon (DIC) is an important component of the global carbon cycle. Herein, we assessed the dynamics of DIC and the C stable isotopic composition (δC) in a watershed with diversified land use in São Paulo State (Brazil), more specifically in the Sorocaba River basin (SRB) and considered the temporal and spatial scales. For this purpose, twelve fluvial samples at each sampling point (e.

View Article and Find Full Text PDF

The simulation of urban water metabolism (UWM) allows for the tracking of all water, energy, and material flows within urban water systems (UWSs) and the quantification of their performance, including emissions into the air, water, and soil. This study evaluates seven drainage strategies (DSs) within conventional and sustainable urban drainage systems (SUDSs) using UWM and multicriteria decision analysis (MCDA). The DSs were designed to assess their corresponding UWM performances, employing key performance indicators (KPIs) related to sewer system balance, energy consumption, greenhouse gas (GHG) emissions, acidification, eutrophication, contamination, and sludge production.

View Article and Find Full Text PDF

The implementation of a machine learning (ML) model to improve both the effectiveness and sustainability of the water treatment system is a significant challenge in the water sector, with the optimization of flocculation processes being a major setback. The objective of this study was to develop a ML model for predicting flocs evolution of the flocculation process in water treatment. Furthermore, we have devised a framework for its potential adoption in large-scale water treatment.

View Article and Find Full Text PDF

This work aims to evaluate the size and lability of Cu and Zn bound to proteins in the cytosol of fish liver of Oreochromis niloticus by employing solid-phase extraction (SPE), diffusive gradients in thin films (DGT), and ultrafiltration (UF). SPE was carried out using Chelex-100. DGT containing Chelex-100 as binding agent was employed.

View Article and Find Full Text PDF

Microplastics (MPs) are an emerging pollutant and a worldwide issue. A wide variety of MPs and tyre wear particles (TWPs) are entering and spreading in the environment. TWPs can reach waterbodies through runoff, where main contributing particulate matter comes from impervious areas.

View Article and Find Full Text PDF

Tannin-based coagulants (TBCs) have the potential to be used to harvest microalgae cultivated at wastewater treatment plants. Their use would address the circular economy associated with the production of low-toxicity biomass and supernatant. Studies in this field are still scarce, and substantial gaps exist in the definitions of the flocculation process parameters.

View Article and Find Full Text PDF

The PO widespread in urban sewages promotes eutrophication of water sources, with harmful effects to natural life and endanger human health. The removal of PO from urban sewage requires treatment at tertiary level, with high costs and low efficiency in most cases. Thus, a functionalization method for surface modification of kaolinite was proposed to improve the removal of PO from urban sewage.

View Article and Find Full Text PDF

The Sustainable Development Goal (SDG) 6.1, established by the United Nations General Assembly in 2015, targets universal and equitable access to safe and affordable drinking water for all by 2030. An essential factor in achieving this goal is the harnessing of "green" coagulants - naturally occurring, environmentally friendly materials which are effective coagulants for use in water treatment, with good availability in developing countries, inherent renewable properties and ease of biodegradation.

View Article and Find Full Text PDF

Although a combination of aggregate characteristics dictate particle settling, it is commonly assumed that large particles have higher terminal velocities. This simplifying assumption often leads to overprediction of large aggregate settling velocities which in turn negatively impacts on estimates of sedimentation clarification efficiency. Despite its importance, little attention has been given to large aggregates with slow-settling velocities.

View Article and Find Full Text PDF

The main land use/land cover changes (LULCC) have been associated with population growth and energy policies in the São Paulo State, Brazil, since 1970. The LULCC can alter the behavior of trace elements in different environmental systems, with the riverbed sediments being the main reservoirs or sinks for trace elements, and thus become a valuable environmental archive on temporal changes. Thus, the main purpose of the study was to apply a multi-tracer analysis to estimate the historical evolution of pollution in riverbed sediment of a subtropical watershed, the lower course of the Piracicaba River, São Paulo, Brazil.

View Article and Find Full Text PDF

The coagulation/flocculation process is an essential step in drinking water treatment. The process of formation, growth, breakage and rearrangement of the formed aggregates is key to enhancing the understanding of the flocculation process. Artificial neural networks (ANNs) are a powerful technique, which can be used to model complex problems in several areas, such as water treatment.

View Article and Find Full Text PDF

The two-dimensional fractal dimension (D) of large aggregates of kaolin (>540μm) during the shear flocculation process for kaolin solution was investigated using non-intrusive in situ image-based acquisition system. Separate experiments were also carried out for three different sized sub-ranges of large aggregates (0.540-1.

View Article and Find Full Text PDF

In this study, the flocculation process in continuous systems with chambers in series was analyzed using the classical kinetic model of aggregation and break-up proposed by Argaman and Kaufman, which incorporates two main parameters: K a and K b. Typical values for these parameters were used, i. e.

View Article and Find Full Text PDF