Publications by authors named "Rodrigo Maillard"

In this study, we utilize Protein Residue Networks (PRNs), constructed using Local Spatial Pattern (LSP) alignment, to explore the dynamic behavior of Catabolite Activator Protein (CAP) upon the sequential binding of cAMP. We employed the Degree Centrality of these PRNs to investigate protein dynamics on a sub-nanosecond time scale, hypothesizing that it would reflect changes in CAP's entropy related to its thermal motions. We show that the binding of the first cAMP led to an increase in stability in the Cyclic-Nucleotide Binding Domain A (CNBD-A) and destabilization in CNBD-B, agreeing with previous reports explaining the negative cooperativity of cAMP binding in terms of an entropy-driven allostery.

View Article and Find Full Text PDF

Cyclic-nucleotide binding (CNB) domains are structurally and evolutionarily conserved signaling modules that regulate proteins with diverse folds and functions. Despite a wealth of structural information, the mechanisms by which CNB domains couple cyclic-nucleotide binding to conformational changes involved in signal transduction remain unknown. Here we combined single-molecule and computational approaches to investigate the conformation and folding energetics of the two CNB domains of the regulatory subunit of protein kinase A (PKA).

View Article and Find Full Text PDF

The link between cofactor binding and protein activity is well-established. However, how cofactor interactions modulate folding of large proteins remains unknown. We use optical tweezers, clustering and global fitting to dissect the folding mechanism of Drosophila cryptochrome (dCRY), a 542-residue protein that binds FAD, one of the most chemically and structurally complex cofactors in nature.

View Article and Find Full Text PDF

Signaling proteins are composed of conserved protein interaction domains that serve as allosteric regulatory elements of enzymatic or binding activities. The ubiquitous, structurally conserved cyclic nucleotide binding (CNB) domain is found covalently linked to proteins with diverse folds that perform multiple biological functions. Given that the structures of cAMP-bound CNB domains in different proteins are very similar, it remains a challenge to determine how this domain allosterically regulates such diverse protein functions and folds.

View Article and Find Full Text PDF

Mutations in protein kinases are often associated with the development of cancer, and application of mutant-specific inhibitors as therapeutic measures have shown a remarkable improvement in prolonging patient survival. However, it has also been observed that tumors bearing certain mutation types are more resistant to current approved drugs. Importantly, many resistant mutations are located in regions outside substrate or inhibitor binding sites, indicating allosteric effects.

View Article and Find Full Text PDF

Allosteric proteins with multiple subunits and ligand-binding sites are central in regulating biological signals. The cAMP receptor protein from Mycobacterium tuberculosis (CRP) is a global regulator of transcription composed of two identical subunits, each one harboring structurally conserved cAMP- and DNA-binding sites. The mechanisms by which these four binding sites are allosterically coupled in CRP remain unclear.

View Article and Find Full Text PDF

Knots are remarkable topological features in nature. The presence of knots in crystallographic structures of proteins have stimulated considerable research to determine the kinetic and thermodynamic consequences of threading a polypeptide chain. By mechanically manipulating MJ0366, a small single domain protein harboring a shallow trefoil knot, we allow the protein to refold from either the knotted or the unknotted denatured state to characterize the free energy profile associated to both folding pathways.

View Article and Find Full Text PDF

Cyclic nucleotide-binding (CNB) domains allosterically regulate the activity of proteins with diverse functions, but the mechanisms that enable the cyclic nucleotide-binding signal to regulate distant domains are not well understood. Here we use optical tweezers and molecular dynamics to dissect changes in folding energy landscape associated with cAMP-binding signals transduced between the two CNB domains of protein kinase A (PKA). We find that the response of the energy landscape upon cAMP binding is domain specific, resulting in unique but mutually coordinated tasks: one CNB domain initiates cAMP binding and cooperativity, whereas the other triggers inter-domain interactions that promote the active conformation.

View Article and Find Full Text PDF

Protein kinases are dynamic molecular switches that sample multiple conformational states. The regulatory subunit of PKA harbors two cAMP-binding domains [cyclic nucleotide-binding (CNB) domains] that oscillate between inactive and active conformations dependent on cAMP binding. The cooperative binding of cAMP to the CNB domains activates an allosteric interaction network that enables PKA to progress from the inactive to active conformation, unleashing the activity of the catalytic subunit.

View Article and Find Full Text PDF

Optical tweezers has emerged as a powerful tool to study folding, ligand binding, and motor enzymes. The manipulation of proteins with optical tweezers requires attaching molecular handles to the protein of interest. Here, we describe a novel method that integrates the covalent attachment of DNA handles to target proteins with a selection step for functional and properly folded molecules.

View Article and Find Full Text PDF

Many allosteric proteins form homo-oligomeric complexes to regulate a biological function. In homo-oligomers, subunits establish communication pathways that are modulated by external stimuli like ligand binding. A challenge for dissecting the communication mechanisms in homo-oligomers is identifying intermediate liganded states, which are typically transiently populated.

View Article and Find Full Text PDF

Mutations in the epitopes of antigenic proteins can confer viral resistance to antibody-mediated neutralization. However, the fundamental properties that characterize epitope residues and how mutations affect antibody binding to alter virus susceptibility to neutralization remain largely unknown. To address these questions, we used an ensemble-based algorithm to characterize the effects of mutations on the thermodynamics of protein conformational fluctuations.

View Article and Find Full Text PDF

Cells employ a variety of strategies to maintain proteome homeostasis. Beginning during protein biogenesis, the translation machinery and a number of molecular chaperones promote correct de novo folding of nascent proteins even before synthesis is complete. Another set of molecular chaperones helps to maintain proteins in their functional, native state.

View Article and Find Full Text PDF

ATP-dependent proteases are vital to maintain cellular protein homeostasis. Here, we study the mechanisms of force generation and intersubunit coordination in the ClpXP protease from E. coli to understand how these machines couple ATP hydrolysis to mechanical protein unfolding.

View Article and Find Full Text PDF

Transduction of biological signals at the molecular level involves the activation and/or inhibition of allosteric proteins. In the transcription factor cAMP receptor protein (CRP) from Escherichia coli, the allosteric activation, or apo-holo transition, involves rigid body motions of domains and structural rearrangements within the hinge region connecting the cAMP- and DNA-binding domains. During this apo-holo transition, residue 138 is converted as part of the elongated D-helix to the position of the N-terminal capping residue of a shorter D-helix.

View Article and Find Full Text PDF

AAA(+) unfoldases denature and translocate polypeptides into associated peptidases. We report direct observations of mechanical, force-induced protein unfolding by the ClpX unfoldase from E. coli, alone, and in complex with the ClpP peptidase.

View Article and Find Full Text PDF

Site-directed mutagenesis of residues in the BC loop (residues 329-333) of the envelope (E) protein domain III in a West Nile virus (WNV) infectious clone and in plasmids encoding recombinant WNV and dengue type 2 virus domain III proteins demonstrated a critical role for residues in this loop in the function and antigenicity of the E protein. This included a strict requirement for the tyrosine at residue 329 of WNV for virus viability and E domain III folding. The absence of an equivalent residue in this region of yellow fever group viruses and most tick-borne flavivirus suggests there is an evolutionary divergence in the molecular mechanisms of domain III folding employed by different flaviviruses.

View Article and Find Full Text PDF

The envelope protein domain III (ED3) of West Nile virus is the major virus-specific neutralization domain and harbors most of the critical mutations that induce resistance against antibody-mediated neutralization. We investigated the molecular mechanisms of neutralization resistance by studying the biophysical perturbations of monoclonal antibody (mAb)-resistant mutations on ED3 wild type. Our results showed that although the solution structure between ED3 wild type and mutants was preserved, the mutations that confer the highest degree of resistance to mAbs showed low protein stability and high local dynamic motions.

View Article and Find Full Text PDF

The structure of the nucleotide-binding site of the Escherichia coli replication factor DnaC protein and the effect of the nucleotide cofactor on the protein structure have been examined using ultraviolet, steady-state, and time-dependent fluorescence spectroscopy. Emission spectra and quenching studies of the fluorescent nucleotide analogs, 3'-O-(N-methylantraniloyl)-5'-triphosphate (MANT-ATP) and 3'-O-(N-methylantraniloyl)-5'-diphosphate (MANT-ADP), bound to the DnaC protein indicate that the nucleotide-binding site forms a hydrophobic cleft on the surface of the protein. Fluorescence decays of free and bound MANT-ATP and MANT-ADP indicate that cofactors exist in two different conformations both, free and bound to the protein.

View Article and Find Full Text PDF

Global conformational and oligomeric states of the Escherichia coli replicative factor DnaC protein in the absence and presence of magnesium and nucleotide cofactors, ATP and ADP, and their fluorescent analogues, MANT-ATP and MANT-ADP, have been examined using analytical sedimentation velocity and time-dependent fluorescence anisotropy techniques. In solution, the DnaC protein exists exclusively as a monomer over a large protein concentration range. The value of s(degrees) (20, w)= 2.

View Article and Find Full Text PDF