Publications by authors named "Rodrigo Leite de Oliveira"

Purpose: The development of resistance limits the clinical benefit of BRAF and MEK inhibitors (BRAFi/MEKi) in BRAFV600-mutated melanoma. It has been shown that short-term treatment (14 days) with vorinostat was able to initiate apoptosis of resistant tumor cells. We aimed to assess the antitumor activity of sequential treatment with vorinostat following BRAFi/MEKi in patients with BRAFV600-mutated melanoma who progressed after initial response to BRAFi/MEKi.

View Article and Find Full Text PDF

Senolytics, drugs that kill senescent cells, have been proposed to improve the response to pro-senescence cancer therapies; however, this remains challenging due to a lack of broadly acting senolytic drugs. Using CRISPR/Cas9-based genetic screens in different senescent cancer cell models, we identify loss of the death receptor inhibitor cFLIP as a common vulnerability of senescent cancer cells. Senescent cells are primed for apoptotic death by NF-κB-mediated upregulation of death receptor 5 (DR5) and its ligand TRAIL, but are protected from death by increased cFLIP expression.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is characterized by abundant stroma, the main cellular constituents of which are cancer-associated fibroblasts (CAFs). Stroma-targeting agents have been proposed to improve the poor outcome of current treatments. However, clinical trials using these agents showed disappointing results.

View Article and Find Full Text PDF

Inducing senescence in cancer cells is emerging as a new therapeutic strategy. In order to find ways to enhance senescence induction by palbociclib, a CDK4/6 inhibitor approved for treatment of metastatic breast cancer, we performed functional genetic screens in palbociclib-resistant cells. Using this approach, we found that loss of CDK2 results in strong senescence induction in palbociclib-treated cells.

View Article and Find Full Text PDF

Discovering biomarkers of drug response and finding powerful drug combinations can support the reuse of previously abandoned cancer drugs in the clinic. Indisulam is an abandoned drug that acts as a molecular glue, inducing degradation of splicing factor RBM39 through interaction with CRL4 Here, we performed genetic and compound screens to uncover factors mediating indisulam sensitivity and resistance. First, a dropout CRISPR screen identified SRPK1 loss as a synthetic lethal interaction with indisulam that can be exploited therapeutically by the SRPK1 inhibitor SPHINX31.

View Article and Find Full Text PDF

Cellular senescence is characterized as a stable proliferation arrest that can be triggered by multiple stresses. Most knowledge about senescent cells is obtained from studies in primary cells. However, senescence features may be different in cancer cells, since the pathways that are involved in senescence induction are often deregulated in cancer.

View Article and Find Full Text PDF

The clinical benefit of treatment with BRAF- and MEK-inhibitors in melanoma is limited due to resistance associated with emerging secondary mutations. Preclinical and clinical studies have shown that short-term treatment with the HDAC inhibitor vorinostat can eliminate cells harboring these secondary mutations causing resistance. This proof of concept study is to determine the efficacy of sequential treatment with vorinostat and BRAFi/MEKi in resistant mutant melanoma.

View Article and Find Full Text PDF

Liver cancer remains difficult to treat, owing to a paucity of drugs that target critical dependencies; broad-spectrum kinase inhibitors such as sorafenib provide only a modest benefit to patients with hepatocellular carcinoma. The induction of senescence may represent a strategy for the treatment of cancer, especially when combined with a second drug that selectively eliminates senescent cancer cells (senolysis). Here, using a kinome-focused genetic screen, we show that pharmacological inhibition of the DNA-replication kinase CDC7 induces senescence selectively in liver cancer cells with mutations in TP53.

View Article and Find Full Text PDF

The clinical responses to targeted drugs are often transient and do not always translate into meaningful overall survival due to the development of resistance. We discuss here that the greater power of drug resistant cells can be associated with significant newly-acquired vulnerabilities that can be exploited therapeutically.

View Article and Find Full Text PDF

BRAF(V600E) mutant melanomas treated with inhibitors of the BRAF and MEK kinases almost invariably develop resistance that is frequently caused by reactivation of the mitogen activated protein kinase (MAPK) pathway. To identify novel treatment options for such patients, we searched for acquired vulnerabilities of MAPK inhibitor-resistant melanomas. We find that resistance to BRAF+MEK inhibitors is associated with increased levels of reactive oxygen species (ROS).

View Article and Find Full Text PDF

Cellular senescence is a natural safeguard against cancer. Pharmacologically, it can be induced by drugs that inhibit the CDK4/6 kinases such as palbociclib, but the exact mechanism has never been dissected. Recent research by Miettinen (2018) reveals that senescence induced by this class of drugs is mediated by proteasome hyper‐activation.

View Article and Find Full Text PDF

Senescence is a proliferation arrest that can result from a variety of stresses. Cancer cells can also undergo senescence, but the stresses that provoke cancer cells to undergo senescence are unclear. Here, we use both functional genetic and compound screens in cancer cells harboring a reporter that is activated during senescence to find targets that induce senescence.

View Article and Find Full Text PDF

Activating mutations and translocations of the FGFR3 gene are commonly seen in urothelial cell carcinoma (UCC) of the bladder and urinary tract. Several fibroblast growth factor receptor (FGFR) inhibitors are currently in clinical development and response rates appear promising for advanced UCC. A common problem with targeted therapeutics is intrinsic or acquired resistance of the cancer cells.

View Article and Find Full Text PDF

Several questions about the role of the oxygen sensor prolyl-hydroxylase 2 (PHD2) in cancer have not been addressed. First, the role of PHD2 in metastasis has not been studied in a spontaneous tumor model. Here, we show that global PHD2 haplodeficiency reduced metastasis without affecting tumor growth.

View Article and Find Full Text PDF

The success of chemotherapy in cancer treatment is limited by scarce drug delivery to the tumor and severe side-toxicity. Prolyl hydroxylase domain protein 2 (PHD2) is an oxygen/redox-sensitive enzyme that induces cellular adaptations to stress conditions. Reduced activity of PHD2 in endothelial cells normalizes tumor vessels and enhances perfusion.

View Article and Find Full Text PDF

PHD2 serves as an oxygen sensor that rescues blood supply by regulating vessel formation and shape in case of oxygen shortage. However, it is unknown whether PHD2 can influence arteriogenesis. Here we studied the role of PHD2 in collateral artery growth by using hindlimb ischaemia as a model, a process that compensates for the lack of blood flow in case of major arterial occlusion.

View Article and Find Full Text PDF

The establishment of a functional, integrated vascular system is instrumental for tissue growth and homeostasis. Without blood vessels no adequate nutrition and oxygen would be provided to cells, nor could the undesired waste products be efficiently removed. Blood vessels constitute therefore one of the largest and most complex body network whose assembly depends on the precise balance of growth factors acting in a complementary and coordinated manner with cells of several identities.

View Article and Find Full Text PDF

An ancestral function of vessels is to conduct blood flow and supply oxygen (O(2)). In hypoxia, cells secrete angiogenic factors to initiate vessel sprouting. Angiogenic factors are balanced off by inhibitors, ensuring that vessels form optimally and supply sufficient oxygen (O(2)).

View Article and Find Full Text PDF

A key function of blood vessels, to supply oxygen, is impaired in tumors because of abnormalities in their endothelial lining. PHD proteins serve as oxygen sensors and may regulate oxygen delivery. We therefore studied the role of endothelial PHD2 in vessel shaping by implanting tumors in PHD2(+/-) mice.

View Article and Find Full Text PDF

Expression of yeast mitochondrial genes depends on specific translational activators acting on the 5'-untranslated region of their target mRNAs. Mss51p is a translational factor for cytochrome c oxidase subunit 1 (COX1) mRNA and a key player in down-regulating Cox1p expression when subunits with which it normally interacts are not available. Mss51p probably acts on the 5'-untranslated region of COX1 mRNA to initiate translation and on the coding sequence itself to facilitate elongation.

View Article and Find Full Text PDF