Drought is widely recognized as one of the most significant agricultural constraints worldwide. A strategy to avoid the adverse effects of drought on crops is to cultivate high-yielding varieties by grafting them onto drought-tolerant rootstocks with a differentiated root system. Thus, the objective of this study was to evaluate fruit yield and quality, root system architecture, and water productivity of watermelon grafted onto rootstocks.
View Article and Find Full Text PDFIn many agricultural areas, crop production has decreased due to a lack of water availability, which is having a negative impact on sustainability and putting food security at risk. In plants, the plasticity of the root system architecture (RSA) is considered to be a key trait driving the modification of the growth and structure of roots in response to water deficits. The purpose of this study was to examine the plasticity of the RSA traits (mean root diameter, MRD; root volume, RV; root length, RL; and root surface area, SA) associated with drought tolerance in eight (Mol.
View Article and Find Full Text PDFGenomic selection models were investigated to predict several complex traits in breeding populations of L. and Labill. For this, the following methods of Machine Learning (ML) were implemented: (i) Deep Learning (DL) and (ii) Bayesian Regularized Neural Network (BRNN) both in combination with different hyperparameters.
View Article and Find Full Text PDFThe evaluation of root system architecture (RSA) development and the physiological responses of crop plants grown under water-limited conditions are of great importance. The purpose of this study was to examine the short-term variation of the morphological and physiological plasticity of genotypes under water deficit, evaluating the changes in the relationship between the root system architecture and leaf physiological responses. Bottle gourd genotypes were grown in rhizoboxes under well-watered and water deficit conditions.
View Article and Find Full Text PDFKnowledge of the genetic architecture of flowering and maturity is needed to develop effective breeding strategies in tropical soybean. The aim of this study was to identify haplotypes across multiple environments that contribute to flowering time and maturity, with the purpose of selecting desired alleles, but maintaining a minimal impact on yield-related traits. For this purpose, a genome-wide association study (GWAS) was undertaken to identify genomic regions that control days to flowering (DTF) and maturity (DTM) using a soybean association mapping panel genotyped for single nucleotide polymorphism (SNP) markers.
View Article and Find Full Text PDFMapping quantitative trait loci through the use of linkage disequilibrium (LD) in populations of unrelated individuals provides a valuable approach for dissecting the genetic basis of complex traits in soybean (Glycine max). The haplotype-based genome-wide association study (GWAS) has now been proposed as a complementary approach to intensify benefits from LD, which enable to assess the genetic determinants of agronomic traits. In this study a GWAS was undertaken to identify genomic regions that control 100-seed weight (SW), plant height (PH) and seed yield (SY) in a soybean association mapping panel using single nucleotide polymorphism (SNP) markers and haplotype information.
View Article and Find Full Text PDF