Metal/water interfaces are key in many natural and industrial processes, such as corrosion, atmospheric, or environmental chemistry. Even today, the only practical approach to simulate large interfaces between a metal and water is to perform force-field simulations. In this work, we propose a novel force field, GAL17, to describe the interaction of water and a Pt(111) surface.
View Article and Find Full Text PDFWe re-investigate the image charge model of Iori and Corni (Iori and Corni, J. Comput. Chem.
View Article and Find Full Text PDFSolvation can substantially modify the adsorption properties of heterogeneous catalysts. Although essential for achieving realistic theoretical models, assessing such solvent effects over nanoparticles is challenging from a computational standpoint due to the complexity of those liquid/metal interfaces. This effect is investigated by ab initio molecular dynamics simulations at 350 K of a large platinum nanoparticle immersed in liquid water.
View Article and Find Full Text PDFUnderstanding the selectivity of the oxygen reduction reaction, especially the formation of water versus hydrogen peroxide in fuel cells, is an ongoing challenge in electrochemistry, surface science and catalysis. In this study, we propose a comprehensive thermodynamic analysis of the reaction intermediates for the formation of water on Pt(111). Density functional theory calculations of all the elementary steps linking hydroxyl and hydroperoxyl surface species with water and hydrogen peroxide have been performed at low (1/12 ML, ML = monolayer) and high (1/4 ML) coverages.
View Article and Find Full Text PDF