Publications by authors named "Rodrigo Fernandez-Perianez"

In this work we report synthetic adhesins (SAs) enabling the rational design of the adhesion properties of E. coli. SAs have a modular structure comprising a stable β-domain for outer membrane anchoring and surface-exposed immunoglobulin domains with high affinity and specificity that can be selected from large repertoires.

View Article and Find Full Text PDF

Tumor-derived exosomes are emerging as local and systemic cell-to-cell mediators of oncogenic information through the horizontal transfer of mRNAs, microRNAs and proteins during tumorigenesis. The exosomal content has been described as biologically active when taken up by the recipient cell. Identifying the specific molecular cargo of exosomes will help to determine their function in specific steps of the tumorigenic process.

View Article and Find Full Text PDF

Metastatic breast cancer is the leading cause of death by malignancy in women worldwide. Tumor metastasis is a multistep process encompassing local invasion of cancer cells at primary tumor site, intravasation into the blood vessel, survival in systemic circulation, and extravasation across the endothelium to metastasize at a secondary site. However, only a small percentage of circulating cancer cells initiate metastatic colonies.

View Article and Find Full Text PDF

Antibody cancer therapies rely on systemically accessible targets and suitable antibodies that exert a functional activity or deliver a payload to the tumor site. Here, we present proof-of-principle of in vivo selection of human antibodies in tumor-bearing mice that identified a tumor-specific antibody able to deliver a payload and unveils the target antigen. By using an ex vivo enrichment process against freshly disaggregated tumors to purge the repertoire, in combination with in vivo biopanning at optimized phage circulation time, we have identified a human domain antibody capable of mediating selective localization of phage to human prostate cancer xenografts.

View Article and Find Full Text PDF