Publications by authors named "Rodrigo Fernandez-Gonzalo"

A detailed understanding of molecular responses to a hypertrophic stimulus in skeletal muscle leads to therapeutic advances aimed at promoting muscle mass. To decode the molecular factors regulating skeletal muscle mass, we utilized a 24-h time course of human muscle biopsies after a bout of resistance exercise. Our findings indicate: (1) the DNA methylome response at 30 min corresponds to upregulated genes at 3 h, (2) a burst of translation- and transcription-initiation factor-coding transcripts occurs between 3 and 8 h, (3) changes to global protein-coding gene expression peaks at 8 h, (4) ribosome-related genes dominate the mRNA landscape between 8 and 24 h, (5) methylation-regulated MYC is a highly influential transcription factor throughout recovery.

View Article and Find Full Text PDF

Molecular control of recovery after exercise in muscle is temporally dynamic. A time course of biopsies around resistance exercise (RE) combined with -omics is necessary to better comprehend the molecular contributions of skeletal muscle adaptation in humans. Vastus lateralis biopsies before and 30 minutes, 3-, 8-, and 24-hours after acute RE were collected.

View Article and Find Full Text PDF

Background: The primary aim of this study was to examine the relationship between maximal oxygen update (V̇O) and within-set fatigue and between-set recovery during resistance exercise in men and women.

Methods: We examined the relationship between V̇O and various indices of fatigue and recovery during parallel squats (3 sets, 90 s rest, 70% of 1RM to failure) and isokinetic knee extensions (3 × 10 maximal repetitions at 60 deg/s, 45 s rest) in 28 (age 27.0 ± 3.

View Article and Find Full Text PDF

Background: Flywheel resistance training has become more integrated within resistance training programs in a variety of sports due to the neuromuscular, strength, and task-specific enhancements reported with this training.

Objective: This paper aimed to present the consensus reached by internationally recognized experts during a meeting on current definitions and guidelines for the implementation of flywheel resistance training technology in sports.

Methods: Nineteen experts from different countries took part in the consensus process; 16 of them were present at the consensus meeting (18 May 2023) while three submitted their recommendations by e-mail.

View Article and Find Full Text PDF

Aim: The aim of this observational study was to determine the immune status and function in young adults with cerebral palsy (CP) in comparison to typically developing individuals.

Method: Blood samples from 12 individuals with CP (five males, seven females; mean age: 25 years 1 month (5 years 9 months); age range: 19-38 years) and 17 typically developing individuals (eight males, nine females; mean age: 31 years 4 months (6 years 2 months); age range: 20-40 years) were collected before, immediately after, and 1 hour after 45 minutes of frame running or running respectively. Independent t-tests were used to compare heart rate, level of exertion, and baseline cell proportions between groups.

View Article and Find Full Text PDF

The skeletal muscle and the immune system are heavily affected by the space environment. The crosstalk between these organs, although established, is not fully understood. This study determined the nature of immune cell changes in the murine skeletal muscle following (hindlimb) unloading combined with an acute session of irradiation (HLUR).

View Article and Find Full Text PDF

Objectives: The aim of the study were to (1) investigate what physical and physiological parameters are most important for Frame Running capacity, a parasport for individuals with ambulatory difficulties, and (2) determine whether Frame Running capacity can be predicted in athletes with cerebral palsy.

Design: Athletes with cerebral palsy ( N = 62, Gross Motor Classification System I-V; 2/26/11/21/2) completed a 6-min Frame Running test. Before the 6-min Frame Running test, muscle thickness, passive range of motion (hip, knee, ankle), selective motor control, and spasticity (hip, knee, ankle) were measured in both legs.

View Article and Find Full Text PDF

Based on the European Space Agency (ESA) Science in Space Environment (SciSpacE) community White Paper "Human Physiology - Musculoskeletal system", this perspective highlights unmet needs and suggests new avenues for future studies in musculoskeletal research to enable crewed exploration missions. The musculoskeletal system is essential for sustaining physical function and energy metabolism, and the maintenance of health during exploration missions, and consequently mission success, will be tightly linked to musculoskeletal function. Data collection from current space missions from pre-, during-, and post-flight periods would provide important information to understand and ultimately offset musculoskeletal alterations during long-term spaceflight.

View Article and Find Full Text PDF

In this study, the properties of circulating extracellular vesicles (EVs) were examined in cerebral palsy (CP) and typically developed (TD) individuals at rest and after aerobic exercise, focusing on the size, concentration, and microRNA cargo of EVs. Nine adult individuals with CP performed a single exercise bout consisting of 45 min of Frame Running, and TD participants completed either 45 min of cycling ( = 10; TD EX) or were enrolled as controls with no exercise ( = 10; TD CON). Blood was drawn before and 30 min after exercise and analyzed for EV concentration, size, and microRNA content.

View Article and Find Full Text PDF

Skeletal muscle adaptations to exercise have been associated with a range of health-related benefits, but cell type-specific adaptations within the muscle are incompletely understood. Here we use single-cell sequencing to determine the effects of exercise on cellular composition and cell type-specific processes in human skeletal muscle before and after intense exercise. Fifteen clusters originating from six different cell populations were identified.

View Article and Find Full Text PDF

Purpose: To determine the physiological response and association to peak oxygen uptake of the 6-minute Frame Running test (6-MFRT) in persons with cerebral palsy (CP).

Methods: Twenty-four participants with CP, Gross Motor Function Classification System II/III/IV, performed the 6-MFRT. Distance, peak heart rate (HR peak ), peak respiratory exchange ratio (RER peak ), and peak oxygen uptake ( O 2peak ) were measured.

View Article and Find Full Text PDF

Mitochondrial-derived peptides (MDPs) humanin (HN) and mitochondrial open reading frame of the 12S rRNA-c (MOTS-c) are involved in cell survival, suppression of apoptosis, and metabolism. Circulating levels of MDPs are altered in chronic diseases such as diabetes type 2 and chronic kidney disease. Whether acute resistance (RE) or endurance (EE) exercise modulates circulating levels of HN and MOTS-c in humans is unknown.

View Article and Find Full Text PDF

To evaluate the individual responses in skeletal muscle outcomes following bed rest, data from three studies (21-day PlanHab; 10-day FemHab and LunHab) were combined. Subjects ( = 35) participated in three cross-over campaigns within each study: normoxic (NBR) and hypoxic bed rest (HBR), and hypoxic ambulation (HAMB; used as control). Individual variability (SD) was investigated as √(SD -SD ), where SD and SD are the standard deviations of the change score (i.

View Article and Find Full Text PDF

Aim: To provide a detailed gene and protein expression analysis related to mitochondrial biogenesis and assess mitochondrial content in skeletal muscle of children with cerebral palsy (CP).

Method: Biceps brachii muscle samples were collected from 19 children with CP (mean [SD] age 15y 4mo [2y 6mo], range 9-18y, 16 males, three females) and 10 typically developing comparison children (mean [SD] age 15y [4y], range 7-21y, eight males, two females). Gene expression (quantitative reverse transcription polymerase chain reaction [PCR]), mitochondrial DNA (mtDNA) to genomic DNA ratio (quantitative PCR), and protein abundance (western blotting) were analyzed.

View Article and Find Full Text PDF

Key Points: Ribosome biogenesis and MYC transcription are associated with acute resistance exercise (RE) and are distinct from endurance exercise in human skeletal muscle throughout a 24 h time course of recovery. A PCR-based method for relative ribosomal DNA (rDNA) copy number estimation was validated by whole genome sequencing and revealed that rDNA dosage is positively correlated with ribosome biogenesis in response to RE. Acute RE modifies rDNA methylation patterns in enhancer, intergenic spacer and non-canonical MYC-associated regions, but not the promoter.

View Article and Find Full Text PDF

Cerebral palsy (CP) is the most common motor impairment in children. Skeletal muscles in individuals with CP are typically weak, thin, and stiff. Whether epigenetic changes at the ribosomal DNA (rDNA) promoter are involved in this dysregulation remains unknown.

View Article and Find Full Text PDF

The current study explored whether the marked hypertrophic response noted with a short-term unilateral concurrent exercise paradigm was associated with more prominent changes in myonuclei accretion, ribosome biogenesis, and capillarization compared with resistance exercise alone (RE). Ten men (age 25 ± 4 yr) performed aerobic and resistance exercise (AE + RE) for one leg while the other leg did RE. Muscle biopsies were obtained before and after 5 wk of training and subjected to fiber-type specific immunohistochemical analysis, and quantification of total RNA content and mRNA/rRNA transcript abundance.

View Article and Find Full Text PDF

Introduction: The development of efficient resistance exercise protocols to counteract muscle dysfunction in cerebral palsy is warranted. Whether individuals with cerebral palsy are able to perform iso-inertial resistance (flywheel) exercise in a comparable manner to typically developed subjects has never been experimentally tested.

Design: A comparative, controlled study.

View Article and Find Full Text PDF

This study explored the muscle genome-wide response to long-term unloading (84-day bed rest) in 21 men. We hypothesized that a part of the bed rest-induced gene expression signature would be resilient to a concurrent flywheel resistance exercise (RE) countermeasure. Using DNA microarray technology analyzing 35 345 gene-level probe-sets, we identified 335 annotated probe-sets that were downregulated, and 315 that were upregulated after bed rest (P < .

View Article and Find Full Text PDF

Background: Individuals with cerebral palsy (CP) are less physically active, spend more time sedentary and have lower cardiorespiratory endurance as compared to typically developed individuals. RaceRunning enables high-intensity exercise in individuals with CP with limited or no walking ability, using a three-wheeled running bike with a saddle and a chest plate for support, but no pedals. Training adaptations using this type of exercise are unknown.

View Article and Find Full Text PDF

Because manual immunohistochemical analysis of features such as skeletal muscle fiber typing, capillaries, myonuclei, and fiber size-related parameters is time consuming and prone to user subjectivity, automatic computational methods could allow for faster and more objective evaluation. Here, we developed Muscle2View, a free CellProfiler-based pipeline that integrates all key fiber-morphological variables, including the novel quantification of the capillary-to-fiber interface, in one single tool. Provided that the images are of sufficient quality and the settings are configured for the specific study, the pipeline allows for automatic and unsupervised analysis of fiber borders, myonuclei, capillaries, and morphometric parameters in a fiber type-specific manner from large batches of images in <10 min/tissue sample.

View Article and Find Full Text PDF

Background: Multiple circulatory factors are increased in heart failure (HF). Many have been linked to cardiac and/or skeletal muscle tissue processes, which in turn might influence physical activity and/or capacity during HF. This study aimed to provide a better understanding of the mechanisms linking HF with the loss of peripheral function.

View Article and Find Full Text PDF

Satellite cells (SCs) form the resident stem cell population in the skeletal muscle tissue. While their function in mediating tissue regeneration after injury is well described, their role in the undamaged-, aging-, and exercising muscle is only starting to be unraveled. Although direct evidence linking the loss of SC function to the onset of age-related loss of muscle mass and function (i.

View Article and Find Full Text PDF