Publications by authors named "Rodrigo Cuervo"

Three experiments evaluated the effects of expression of estrus and gonadotropin releasing hormone (GnRH) treatment on pregnancies per AI (P/AI) in beef cattle that were treated with an estradiol/progesterone (P4)-based protocol for fixed-time artificial insemination (FTAI). In Experiment 1, 20 non-lactating beef cows were treated with 2 mg estradiol benzoate (EB) and an intravaginal device containing 0.5 g of P4.

View Article and Find Full Text PDF

Programmed Cell Death (PCD) is a broad term used to describe a series of events that culminate in the death of specific cells. In the embryo it occurs at predictable stages and tissues. During mouse development, PCD is a mechanism to preserve the homeostasis of the growing organism, and also is needed for the morphogenesis of a variety of structures.

View Article and Find Full Text PDF

The anuran amphibian Xenopus laevis can regenerate its limbs for a limited time during the larval stage, while limbs are still developing. Using this regeneration model, we evaluated the proximo-distal blastema cell identity when endogenous retinoids were increased by CYP26 inhibition or when RAR-specific agonists altered RA signaling. Simultaneous proximo-distal and antero-posterior limb duplications were generated, and the RAR-specific agonist can modify blastema identity after amputation, because chemical activation of RARβ produced bilateral hindlimb duplications that resulted in a drastic duplication phenotype of regenerating limbs.

View Article and Find Full Text PDF

Full limb regeneration is a property that seems to be restricted to urodele amphibians. Here we found that Polypterus, the most basal living ray-finned fish, regenerates its pectoral lobed fins with a remarkable accuracy. Pectoral Polypterus fins are complex, formed by a well-organized endoskeleton to which the exoskeleton rays are connected.

View Article and Find Full Text PDF

During the hand plate development, the processes of cell differentiation and control of cell death are relevant to ensure a correct shape of the limb. The progenitor cell pool that later will differentiate into cartilage to form the digits arises from undifferentiated mesenchymal cells beneath the apical ectodermal ridge (AER). Once these cells abandon the area of influence of signals from AER and ectoderm, some cells are committed to chondrocyte lineage forming the digital rays.

View Article and Find Full Text PDF

Bone morphogenetic proteins (BMPs) play a crucial role in programmed cell death (PCD), a biological process required for the sculpturing of the embryonic limbs. However, it is unknown if BMP signaling directly promotes cell death, or if it induces a molecular cascade that culminates in cell death. Given that Smad8, which encodes one component of BMP signaling, is expressed during the regression of interdigital tissue and responds to BMPs, we presumed that it may be expressed in other cell death areas during chick limb development such as the anterior and posterior necrotic zones (ANZ and PNZ).

View Article and Find Full Text PDF

Vertebrate limb development is a well-studied model of apoptosis; however, little is known about the intracellular molecules involved in activating the cell death machinery. We have shown that high levels of reactive oxygen species (ROS) are present in the interdigital 'necrotic' tissue of mouse autopod, and that antioxidants can reduce cell death. Here, we determined the expression pattern of several antioxidant enzymes in order to establish their role in defining the areas with high ROS levels.

View Article and Find Full Text PDF

During mammalian development, a pair of shelves fuses to form the secondary palate, a process that requires the adhesion of the medial edge epithelial tissue (MEE) of each shelf and the degeneration of the resulting medial epithelial seam (MES). It has been reported that epithelial-mesenchymal transformation (EMT) occurs during shelf fusion and is considered a fundamental process for MES degeneration. We recently found that cell death is a necessary process for shelf fusion.

View Article and Find Full Text PDF

The actual role of programmed cell death (PCD) in embryonic processes and the extrinsic signals that define the death fate in developing cells are still poorly understood. Here, we show that during secondary palate shelf fusion in the mouse, PCD appeared in the medial edge epithelia (MEE) of the anterior region only after shelf contact. Contact was necessary for efficient cell death activation in the MEE.

View Article and Find Full Text PDF