Publications by authors named "Rodrigo A Quintanilla"

Article Synopsis
  • Autism spectrum disorder (ASD) is linked to mitochondrial dysfunction, which involves increased mitochondrial DNA (mtDNA) copy number and energy production issues; this study focused on key genes related to mtDNA replication to understand their role in ASD.
  • Children with ASD showed higher mtDNA copy numbers and some mtDNA deletions in oral samples, but no significant changes were found in the expression of mitochondrial replisome genes compared to typically developing controls.
  • Increased oxidative stress and inflammation were noted in ASD subjects, and while overexpressing the TFAM gene in cell cultures led to some mitochondrial benefits, this didn't directly tie to changes in gene expression or mtDNA integrity, indicating a complex relationship between mitochondrial dysfunction and ASD.
View Article and Find Full Text PDF

Aging presents progressive changes that increase the susceptibility of the central nervous system (CNS) to suffer neurological disorders (NDs). Several studies have reported that an aged brain suffering from NDs shows the presence of pathological forms of tau protein, a microtubule accessory protein (MAP) critical for neuronal function. In this context, accumulative evidence has shown a pivotal contribution of pathological forms of tau to Alzheimer's disease (AD) and tauopathies.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic and degenerative disease that impacts central nervous system (CNS) function. One of the major characteristics of the disease is the presence of regions lacking myelin and an oxidative and inflammatory environment. TGF-β1 and Nrf2 proteins play a fundamental role in different oxidative/inflammatory processes linked to neurodegenerative diseases such as MS.

View Article and Find Full Text PDF

Alcohol, a toxic and psychoactive substance with addictive properties, severely impacts life quality, leading to significant health, societal, and economic consequences. Its rapid passage across the blood-brain barrier directly affects different brain cells, including astrocytes. Our recent findings revealed the involvement of pannexin-1 (Panx1) and connexin-43 (Cx43) hemichannels in ethanol-induced astrocyte dysfunction and death.

View Article and Find Full Text PDF

Current studies indicate that pathological modifications of tau are associated with mitochondrial dysfunction, synaptic failure, and cognitive decline in neurological disorders and aging. We previously showed that caspase-3 cleaved tau, a relevant tau form in Alzheimer's disease (AD), affects mitochondrial bioenergetics, dynamics and synaptic plasticity by the opening of mitochondrial permeability transition pore (mPTP). Also, genetic ablation of tau promotes mitochondrial function boost and increased cognitive capacities in aging mice.

View Article and Find Full Text PDF

Aims: In mammals, central chemoreception plays a crucial role in the regulation of breathing function in both health and disease conditions. Recently, a correlation between high levels of superoxide anion (O) in the Retrotrapezoid nucleus (RTN), a main brain chemoreceptor area, and enhanced central chemoreception has been found in rodents. Interestingly, deficiency in superoxide dismutase 2 (SOD2) expression, a pivotal antioxidant enzyme, has been linked to the development/progression of several diseases.

View Article and Find Full Text PDF

The gut-brain axis is an essential communication pathway between the central nervous system (CNS) and the gastrointestinal tract. The human microbiota is composed of a diverse and abundant microbial community that compasses more than 100 trillion microorganisms that participate in relevant physiological functions such as host nutrient metabolism, structural integrity, maintenance of the gut mucosal barrier, and immunomodulation. Recent evidence in animal models has been instrumental in demonstrating the possible role of the microbiota in neurodevelopment, neuroinflammation, and behavior.

View Article and Find Full Text PDF

Mitochondrial dysfunction is a significant factor in the development of Alzheimer's disease (AD). Previous studies have demonstrated that the expression of tau cleaved at Asp421 by caspase-3 leads to mitochondrial abnormalities and bioenergetic impairment. However, the underlying mechanism behind these alterations and their impact on neuronal function remains unknown.

View Article and Find Full Text PDF

Tau protein plays a pivotal role in the central nervous system (CNS), participating in microtubule stability, axonal transport, and synaptic communication. Research interest has focused on studying the role of post-translational tau modifications in mitochondrial failure, oxidative damage, and synaptic impairment in Alzheimer's disease (AD). Soluble tau forms produced by its pathological cleaved induced by caspases could lead to neuronal injury contributing to oxidative damage and cognitive decline in AD.

View Article and Find Full Text PDF

During Alzheimer's (AD), tau protein suffers from abnormal post-translational modifications, including cleaving by caspase-3. These tau forms affect synaptic plasticity contributing to the cognitive decline observed in the early stages of AD. In addition, caspase-3 cleaved tau (TauC3) impairs mitochondrial dynamics and organelles transport, which are both relevant processes for synapse.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is brain damage due to external forces. Mild TBI (mTBI) is the most common form of TBI, and repeated mTBI is a risk factor for developing neurodegenerative diseases. Several mechanisms of neuronal damage have been described in the cortex and hippocampus, including mitochondrial dysfunction.

View Article and Find Full Text PDF

Neurological disorders (NDs) are characterized by progressive neuronal dysfunction leading to synaptic failure, cognitive impairment, and motor injury. Among these diseases, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) have raised a significant research interest. These disorders present common neuropathological signs, including neuronal dysfunction, protein accumulation, oxidative damage, and mitochondrial abnormalities.

View Article and Find Full Text PDF

Multiple sclerosis (MS) encompasses a chronic, irreversible, and predominantly immune-mediated disease of the central nervous system that leads to axonal degeneration, neuronal death, and several neurological symptoms. Although various immune therapies have reduced relapse rates and the severity of symptoms in relapsing-remitting MS, there is still no cure for this devastating disease. In this brief review, we discuss the role of mitochondria dysfunction in the progression of MS, focused on the possible role of Nrf2 signaling in orchestrating the impairment of critical cellular and molecular aspects such as reactive oxygen species (ROS) management, under neuroinflammation and neurodegeneration in MS.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by memory and cognitive impairment, accompanied by the accumulation of extracellular deposits of amyloid β-peptide (Aβ) and the presence of neurofibrillary tangles (NFTs) composed of pathological forms of tau protein. Mitochondrial dysfunction and oxidative stress are also critical elements for AD development. We previously showed that the presence of caspase-3 cleaved tau, a relevant pathological form of tau in AD, induced mitochondrial dysfunction and oxidative damage in different neuronal models.

View Article and Find Full Text PDF

The increase in human life expectancy has become a challenge to reduce the deleterious consequences of aging. Nowadays, an increasing number of the population suffer from age-associated neurodegenerative diseases including Parkinson's disease (PD) and Alzheimer's disease (AD). These disorders present different signs of neurodegeneration such as mitochondrial dysfunction, inflammation, and oxidative stress.

View Article and Find Full Text PDF

Aging is an irreversible process and the primary risk factor for the development of neurodegenerative diseases, such as Alzheimer's disease (AD). Mitochondrial impairment is a process that generates oxidative damage and ATP deficit; both factors are important in the memory decline showed during normal aging and AD. Tau is a microtubule-associated protein, with a strong influence on both the morphology and physiology of neurons.

View Article and Find Full Text PDF

Background And Objective: Chronic intermittent hypoxia (CIH), one of the main features of obstructive sleep apnea (OSA), enhances carotid body-mediated chemoreflex and induces hypertension and breathing disorders. The carbamylated form of erythropoietin (cEpo) may have beneficial effects as it retains its antioxidant/anti-inflammatory and neuroprotective profile without increasing red blood cells number. However, no studies have evaluated the potential therapeutic effect of cEpo on CIH-related cardiorespiratory disorders.

View Article and Find Full Text PDF

Mitochondria are highly specialized organelles essential for the synapse, and their impairment contributes to the neurodegeneration in Alzheimer's disease (AD). Previously, we studied the role of caspase-3-cleaved tau in mitochondrial dysfunction in AD. In neurons, the presence of this AD-relevant tau form induced mitochondrial fragmentation with a concomitant reduction in the expression of Opa1, a mitochondrial fission regulator.

View Article and Find Full Text PDF

Binge drinking is the consumption of large volumes of alcohol in short periods and exerts its effects on the central nervous system, including the hippocampus. We have previously shown that binge drinking alters mitochondrial dynamics and induces neuroinflammation in the hippocampus of adolescent rats. Mild traumatic brain injury (mTBI), is regularly linked to alcohol consumption and share mechanisms of brain damage.

View Article and Find Full Text PDF

Binge drinking is a common pattern of adolescent alcohol consumption characterized by a high alcohol intake within a short period of time; which may seriously affect brain function, triggering in some cases an addictive behavior. Current evidence indicates that alcohol addictive conduct is related to the impairment of the Melanocortin System (MCS). This system participates in the regulation of food intake and promotes anti-inflammatory response in the brain.

View Article and Find Full Text PDF

Excessive alcohol intake affects hippocampal function and neuronal communication through oxidative stress and mitochondrial impairment. Previous studies have suggested that the melanocortin system (MCS) plays an essential role in alcohol consumption and addiction. The MCS is a hypothalamic region involved in regulating inflammatory processes in the brain, and its pharmacological activation through the melanocortin-4 receptor (MC4R) reduces both alcohol consumption and the neuroinflammatory responses in the brain.

View Article and Find Full Text PDF

Alterations in connexins and specifically in 43 isoform (Cx43) in the heart have been associated with a high incidence of arrhythmogenesis and sudden death in several cardiac diseases. We propose to determine salutary effect of Cx43 mimetic peptide Gap27 in the progression of heart failure. High-output heart failure was induced by volume overload using the arterio-venous fistula model (AV-Shunt) in adult male rats.

View Article and Find Full Text PDF

Acute ethanol treatment induces neurodegeneration in cultured neurons and can lead to brain damage in animal models. Neuronal cells exposed to ethanol showed an increase in reactive oxygen species (ROS), oxidative damage and mitochondrial impairment contributing to synaptic failure. However, the underlying mechanisms of these events are not well understood.

View Article and Find Full Text PDF

Problematic alcohol drinking and alcohol dependence are an increasing health problem worldwide. Alcohol abuse is responsible for approximately 5% of the total deaths in the world, but addictive consumption of it has a substantial impact on neurological and memory disabilities throughout the population. One of the better-studied brain areas involved in cognitive functions is the hippocampus, which is also an essential brain region targeted by ethanol.

View Article and Find Full Text PDF

Many studies have reported that alcohol produces harmful effects on several brain structures, including the hippocampus, in both rodents and humans. The hippocampus is one of the most studied areas of the brain due to its function in learning and memory, and a lot of evidence suggests that hippocampal failure is responsible for the cognitive loss present in individuals with recurrent alcohol consumption. Mitochondria are organelles that generate the energy needed for the brain to maintain neuronal communication, and their functional failure is considered a mediator of the synaptic dysfunction induced by alcohol.

View Article and Find Full Text PDF