Publications by authors named "Rodrigo A F Souza"

Article Synopsis
  • Smoke from forest fires poses significant health risks globally, particularly affecting regions like the Amazon basin, where agricultural practices contribute to air quality issues.
  • Public health authorities struggle to predict and manage the effects of smoke, making it challenging to protect communities like Manaus from cardiorespiratory illnesses linked to fire smoke.
  • A study found a one-day lag between fire events and increased hospital admissions for respiratory problems, suggesting that an early warning system could help mitigate health impacts in affected areas.
View Article and Find Full Text PDF

Urbanization and fires perturb the quantities and composition of fine organic aerosol in the central Amazon, with ramifications for radiative forcing and public health. These disturbances include not only direct emissions of particulates and secondary organic aerosol (SOA) precursors but also changes in the pathways through which biogenic precursors form SOA. The composition of ambient organic aerosol is complex and incompletely characterized, encompassing millions of potential structures relatively few of which have been synthesized and characterized.

View Article and Find Full Text PDF

For regulatory purposes, air pollution has been reduced to management of air quality control regions (AQCR), by inventorying pollution sources and identifying the receptors significantly affected. However, beyond being source-dependent, particulate matter can be physically and chemically altered by factors and elements of climate during transport, as they act as local environmental constraints, indirectly modulating the adverse effects of particles on the environment and human health. This case study, at an industrial site in a Brazilian coastal city - Joinville, combines different methodologies to integrate atmospheric dynamics in a strategic risk assessment approach whereby the influence of different wind regimes on environmental and health risks of exposure to PM-bound elements, are analysed.

View Article and Find Full Text PDF

Volatile organic compounds (VOCs) emitted from forests are important chemical components that affect ecosystem functioning, atmospheric chemistry, and regional climate. Temperature differences between a forest and an adjacent river can induce winds that influence VOC fate and transport. Quantitative observations and scientific understanding, however, remain lacking.

View Article and Find Full Text PDF

The identification of fire causes and characteristics is of fundamental importance to better understand fire regimes and drivers. Particularly for Brazil, there is a gap in the quantification of lightning-caused fires. Accordingly, this work is a novel probabilistic assessment of the spatial-temporal patterns of lightning-ignited wildfires in the Pantanal wetland.

View Article and Find Full Text PDF

Vector-borne diseases are some of the leading public health problems in the tropics, and their association with climatic anomalies is well known. The current study aimed to evaluate the trend of American cutaneous leishmaniasis cases in the municipality of Manaus, Amazonas-Brazil, and its relationship with climatic extremes (ENSO). The study was carried out using a series of secondary data from notifications on the occurrence of several American cutaneous leishmaniasis cases in the municipality of Manaus between 1990 and 2017 obtained through the Sistema de Informação de Agravos de Notificação.

View Article and Find Full Text PDF

The Colombian Biogeographic Choco (CBC) and the La Plata Basin (LPB) are regions with high biodiversity. However, these areas are characterized by scarce climatological information, complex orography, and rain-gauge network unevenly distributed. Interpolated data from the ground station might overcome these aspects.

View Article and Find Full Text PDF
Article Synopsis
  • The Amazon rainforest is a major source of primary biological aerosols (PBAs), which significantly affect ecosystems and climate.
  • Seasonal variations in temperature, humidity, and precipitation primarily drive changes in the aerosol microbiome's composition in the Amazon.
  • The study identifies core bacterial families in the aerosol and suggests that the phyllosphere could be a source of these airborne bacteria.
View Article and Find Full Text PDF
Article Synopsis
  • Anthropogenic emissions significantly impact the chemistry of secondary organic aerosol (SOA) formation from isoprene in forested environments.
  • Research conducted in the Amazon and Southeastern U.S. shows that tracer concentrations for isoprene-derived SOA correlate with particulate sulfate, indicating that a reduction in sulfate can lead to a reduction in SOA.
  • The study highlights the dominance of organosulfates in isoprene/NO pathway SOA and reveals the relationship between particle acidity and isoprene-derived compounds, challenging traditional views that associate these compounds primarily with human influence.
View Article and Find Full Text PDF

Recent studies to quantify the health risks that fine particulate matter with an aerodynamic less than 2.5 µm (PM) pose use in vitro approaches. One of these approaches is to incubate PM in artificial lysosomal fluid for a given period at body temperature.

View Article and Find Full Text PDF
Article Synopsis
  • Extreme droughts have hit the Amazon every 5 years in the 21st century, peaking in 2015, leading to increased biomass burning (BB) that negatively impacted air quality.
  • The study focused on air quality in Manaus, Brazil, during wet and dry seasons of 2015 and 2016, coinciding with a strong El Niño event that intensified BB occurrences.
  • Analysis showed a significant rise in particulate matter, with carbon monoxide levels increasing by 15% and levoglucosan by 500% due to heightened BB during the El Niño, suggesting future air quality degradation if droughts and BB continue.
View Article and Find Full Text PDF

Limited studies have reported on in-vitro analysis of PM but as far as the authors are aware, bioaccessibility of PM in artificial lysosomal fluid (ALF) has not been linked to urban development models before. The Brazilian cities Manaus (Amazon) and Curitiba (South region) have different geographical locations, climates, and urban development strategies. Manaus drives its industrialization using the free trade zone policy and Curitiba adopted a services centered economy driven by sustainability.

View Article and Find Full Text PDF

Highly oxygenated molecules (HOMs) play an important role in the formation and evolution of secondary organic aerosols (SOA). However, the abundance of HOMs in different environments and their relation to the oxidative potential of fine particulate matter (PM) are largely unknown. Here, we investigated the relative HOM abundance and radical yield of laboratory-generated SOA and fine PM in ambient air ranging from remote forest areas to highly polluted megacities.

View Article and Find Full Text PDF

The emissions, deposition, and chemistry of volatile organic compounds (VOCs) are thought to be influenced by underlying landscape heterogeneity at intermediate horizontal scales of several hundred meters across different forest subtypes within a tropical forest. Quantitative observations and scientific understanding at these scales, however, remain lacking, in large part due to a historical absence of canopy access and suitable observational approaches. Herein, horizontal heterogeneity in VOC concentrations in the near-canopy atmosphere was examined by sampling from an unmanned aerial vehicle (UAV) flown horizontally several hundred meters over the plateau and slope forests in central Amazonia during the morning and early afternoon periods of the wet season of 2018.

View Article and Find Full Text PDF

Acid-driven multiphase chemistry of isoprene epoxydiols (IEPOX), key isoprene oxidation products, with inorganic sulfate aerosol yields substantial amounts of secondary organic aerosol (SOA) through the formation of organosulfur compounds. The extent and implications of inorganic-to-organic sulfate conversion, however, are unknown. In this article, we demonstrate that extensive consumption of inorganic sulfate occurs, which increases with the IEPOX-to-inorganic sulfate concentration ratio (IEPOX/Sulf), as determined by laboratory measurements.

View Article and Find Full Text PDF

Biological aerosols (bioaerosol) are atmospheric particles that act as a dispersion unit of living organisms across the globe thereby affecting the biogeographic distribution of organisms. Despite their importance, there is virtually no knowledge about bioaerosols emitted by pristine forests. Here we provide the very first survey of the prokaryotic community of a bioaerosol collected inside pristine Amazon forest at 2 m above ground.

View Article and Find Full Text PDF

This research aims to assess air quality in a transitional location between city and forest in the Amazon region. Located downwind of the Manaus metropolitan region, this study is part of the large-scale experiment GoAmazon2014/5. Based on their pollutant potential, inhalable particulate matter (PM), nitrogen dioxide (NO), sulfur dioxide (SO), ozone (O), hydrogen sulfide (HS), benzene, toluene, ethylbenzene and meta-, orto-, para-xylene (BTEX) were selected for analysis.

View Article and Find Full Text PDF

Acid-catalyzed multiphase chemistry of isoprene epoxydiols (IEPOX) on sulfate aerosol produces substantial amounts of water-soluble secondary organic aerosol (SOA) constituents, including 2-methyltetrols, methyltetrol sulfates, and oligomers thereof in atmospheric fine particulate matter (PM2.5). These constituents have commonly been measured by gas chromatography interfaced to electron ionization mass spectrometry (GC/EI-MS) with prior derivatization or by reverse-phase liquid chromatography interfaced to electrospray ionization high-resolution mass spectrometry (RPLC/ESI-HR-MS).

View Article and Find Full Text PDF

Nitrogen oxides (NO ) emitted from human activities are believed to regulate the atmospheric oxidation capacity of the troposphere. However, observational evidence is limited for the low-to-median NO concentrations prevalent outside of polluted regions. Directly measuring oxidation capacity, represented primarily by hydroxyl radicals (OH), is challenging, and the span in NO concentrations at a single observation site is often not wide.

View Article and Find Full Text PDF

Background: Phlebotomine sand flies (Diptera: Psychodidae) are vectors of Leishmania species, the etiological agents of leishmaniasis, which is one of the most important emerging infectious diseases in the Americas. In the state of Amazonas in Brazil, anthropogenic activities encourage the presence of these insects around rural homes. The present study aimed to describe the composition and distribution of sand fly species diversity among the ecotopes (intradomicile, peridomicile and forest) in an area of American cutaneous leishmaniasis transmission and detect natural infection with Leishmania DNA to evaluate which vectors are inside houses and whether the presence of possible vectors represents a hazard of transmission.

View Article and Find Full Text PDF

Aerosol-cloud interactions remain the largest uncertainty in climate projections. Ultrafine aerosol particles smaller than 50 nanometers (UAP) can be abundant in the troposphere but are conventionally considered too small to affect cloud formation. Observational evidence and numerical simulations of deep convective clouds (DCCs) over the Amazon show that DCCs forming in a low-aerosol environment can develop very large vapor supersaturation because fast droplet coalescence reduces integrated droplet surface area and subsequent condensation.

View Article and Find Full Text PDF

The present study examines the spatiotemporal variability and interrelations of the atmospheric methane (CH), carbon monoxide (CO) and biomass burning (BB) outbreaks retrieved from satellite data over the Amazon region during the 2003-2012 period. In the climatological context, we found consistent seasonal cycles of BB outbreaks and CO in the Amazon, both variables showing a peak during the dry season. The dominant CO variability mode features the largest positive loadings in the southern Amazon, and describes the interannual CO variations related to BB outbreaks along the deforestation arc during the dry season.

View Article and Find Full Text PDF

Isoprene dominates global non-methane volatile organic compound emissions, and impacts tropospheric chemistry by influencing oxidants and aerosols. Isoprene emission rates vary over several orders of magnitude for different plants, and characterizing this immense biological chemodiversity is a challenge for estimating isoprene emission from tropical forests. Here we present the isoprene emission estimates from aircraft eddy covariance measurements over the Amazonian forest.

View Article and Find Full Text PDF

The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin (for example, ref. 2) and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood.

View Article and Find Full Text PDF

Isoprene photooxidation is a major driver of atmospheric chemistry over forested regions. Isoprene reacts with hydroxyl radicals (OH) and molecular oxygen to produce isoprene peroxy radicals (ISOPOO). These radicals can react with hydroperoxyl radicals (HO2) to dominantly produce hydroxyhydroperoxides (ISOPOOH).

View Article and Find Full Text PDF