Low-dimensional materials, such as MoS, hold promise for use in a host of emerging applications, including flexible, wearable sensors due to their unique electrical, thermal, optical, mechanical, and tribological properties. The implementation of such devices requires an understanding of adhesive phenomena at the interfaces between these materials. Here, we describe combined nanoscale transmission electron microscopy (TEM)/atomic force microscopy (AFM) experiments and simulations measuring the work of adhesion () between self-mated contacts of ultrathin nominally amorphous and nanocrystalline MoS films deposited on Si scanning probe tips.
View Article and Find Full Text PDFNeedle-and-syringe-based delivery has been the commercial standard for vaccine administration to date. With worsening medical personnel availability, increasing biohazard waste production, and the possibility of cross-contamination, we explore the possibility of biolistic delivery as an alternate skin-based delivery route. Delicate formulations like liposomes are inherently unsuitable for this delivery model as they are fragile biomaterials incapable of withstanding shear stress and are exceedingly difficult to formulate as a lyophilized powder for room temperature storage.
View Article and Find Full Text PDFSilver nanowires have a wide range of potential applications in stretchable and transparent electronics due to their excellent electrical, mechanical, and optical properties. For a successful application in electronic devices, evaluating the electrical reliability of these nanowires is required. We have studied experimentally the behavior of current density at failure for penta-twinned silver nanowires with diameters between 53 and 173 nm, for 93 samples.
View Article and Find Full Text PDFNanoscale asperity-on-asperity sliding experiments were conducted using a nanoindentation apparatus inside a transmission electron microscope, allowing for atomic-scale resolution of contact formation, sliding, and adhesive separation of two silicon nanoasperities in real time. The formation and separation of the contacts without sliding revealed adhesion forces often below detectable limits (ca. 5 nN) or at most equal to values expected from van der Waals forces.
View Article and Find Full Text PDFNanotwinned-metals (nt-metals) offer superior mechanical (high ductility and strength) and electrical (low electromigration) properties compared to their nanocrystalline (nc) counterparts. These properties are advantageous in particular for applications in nanoscale devices. However, fabrication of nt-metals has been limited to films (two-dimensional) or template-based (one-dimensional) geometries, using various chemical and physical processes.
View Article and Find Full Text PDFNanotwinned (nt)-metals exhibit superior mechanical and electrical properties compared to their coarse-grained and nanograined counterparts. nt-metals in film and bulk forms are obtained using physical and chemical processes including pulsed electrodeposition (PED), plastic deformation, recrystallization, phase transformation, and sputter deposition. However, currently, there is no process for 3D printing (additive manufacturing) of nt-metals.
View Article and Find Full Text PDFMEMS and other lab-on-a-chip systems are emerging as attractive alternatives to carry out experiments in situ the electron microscope. However, several electrical connections are usually required for operating these setups. Such connectivity is challenging inside the limited space of the TEM side-entry holder.
View Article and Find Full Text PDFSilver nanowires are promising components of flexible electronics such as interconnects and touch displays. Despite the expected cyclic loading in these applications, characterization of the cyclic mechanical behavior of chemically synthesized high-quality nanowires has not been reported. Here, we combine in situ TEM tensile tests and atomistic simulations to characterize the cyclic stress-strain behavior and plasticity mechanisms of pentatwinned silver nanowires with diameters thinner than 120 nm.
View Article and Find Full Text PDFElectromechanical coupling is a topic of current interest in nanostructures, such as metallic and semiconducting nanowires, for a variety of electronic and energy applications. As a result, the determination of structure-property relations that dictate the electromechanical coupling requires the development of experimental tools to perform accurate metrology. Here, a novel micro-electro-mechanical system (MEMS) that allows integrated four-point, uniaxial, electromechanical measurements of freestanding nanostructures in-situ electron microscopy, is reported.
View Article and Find Full Text PDFThe emergence of one-dimensional nanostructures as fundamental constituents of advanced materials and next-generation electronic and electromechanical devices has increased the need for their atomic-scale characterization. Given its spatial and temporal resolution, coupled with analytical capabilities, transmission electron microscopy (TEM) has been the technique of choice in performing atomic structure and defect characterization. A number of approaches have been recently developed to combine these capabilities with in-situ mechanical deformation and electrical characterization in the emerging field of in-situ TEM electromechanical testing.
View Article and Find Full Text PDFA unique size-dependent strain hardening mechanism, that achieves both high strength and ductility, is demonstrated for penta-twinned Ag nanowires (NWs) through a combined experimental-computational approach. Thin Ag NWs are found to deform via the surface nucleation of stacking fault decahedrons (SFDs) in multiple plastic zones distributed along the NW. Twin boundaries lead to the formation of SFD chains that locally harden the NW and promote subsequent nucleation of SFDs at other locations.
View Article and Find Full Text PDFPiezoelectric nanowires are promising building blocks in nanoelectronic, sensing, actuation and nanogenerator systems. In spite of great progress in synthesis methods, quantitative mechanical and electromechanical characterization of these nanostructures is still limited. In this article, the state-of-the art in experimental and computational studies of mechanical and electromechanical properties of piezoelectric nanowires is reviewed with an emphasis on size effects.
View Article and Find Full Text PDFGaN nanowires oriented along the nonpolar a-axis were analyzed using pulsed laser atom probe tomography (APT). Stoichiometric mass spectra were achieved by optimizing the temperature, applied dc voltage, and laser pulse energy. Local variations in the measured stoichiometry were observed and correlated with facet polarity using scanning electron microscopy.
View Article and Find Full Text PDFSemiconductor GaN NWs are promising components in next generation nano- and optoelectronic systems. In addition to their direct band gap, they exhibit piezoelectricity, which renders them particularly attractive in energy harvesting applications for self-powered devices. Nanowires are often considered as one-dimensional nanostructures; however, the electromechanical coupling leads to a third rank tensor that for wurtzite crystals (GaN NWs) possesses three independent coefficients, d(33), d(13), and d(15).
View Article and Find Full Text PDFWe characterized the elastic properties of GaN nanowires grown along different crystallographic orientations. In situ transmission electron microscopy tensile tests were conducted using a MEMS-based nanoscale testing system. Complementary atomistic simulations were performed using density functional theory and molecular dynamics.
View Article and Find Full Text PDF