Unlabelled: Hematological cancer treatment with hybrid kinase/HDAC inhibitors is a novel strategy to overcome the challenge of acquired resistance to drugs. We collected IC datasets from the ChEMBL database for 13 cancer cell lines (72 h cytotoxicity, measured by MTT), known inhibitors for 38 kinases, and 10 HDACs isoforms, that we identified by target fishing and literature review. The data was subjected to rigorous biological and chemical curation leaving the final datasets ranging from 76 to 8173 compounds depending on the target.
View Article and Find Full Text PDFCytotoxicity is essential in drug discovery, enabling early evaluation of toxic compounds during screenings to minimize toxicological risks. assays support high-throughput screening, allowing for efficient detection of toxic substances while considerably reducing the need for animal testing. Additionally, AI-based Quantitative Structure-Activity Relationship (AI-QSAR) models enhance early stage predictions by assessing the cytotoxic potential of molecular structures, which helps prioritize low-risk compounds for further validation.
View Article and Find Full Text PDFThe human Ether-à-go-go-Related Gene (hERG) is a transmembrane protein that regulates cardiac action potential, and its inhibition can induce a potentially deadly cardiac syndrome. tests help identify hERG blockers at early stages; however, the high cost motivates searching for alternative, cost-effective methods. The primary goal of this study was to enhance the Pred-hERG tool for predicting hERG blockage.
View Article and Find Full Text PDFChagas disease and human African trypanosomiasis cause substantial death and morbidity, particularly in low- and middle-income countries, making the need for novel drugs urgent. Therefore, an explainable multitask pipeline to profile the activity of compounds against three trypanosomes ( and ) were created. These models successfully discovered four new experimental hits (, , and ).
View Article and Find Full Text PDFHits from high-throughput screening (HTS) of chemical libraries are often false positives due to their interference with assay detection technology. In response, we generated the largest publicly available library of chemical liabilities and developed "Liability Predictor," a free web tool to predict HTS artifacts. More specifically, we generated, curated, and integrated HTS data sets for thiol reactivity, redox activity, and luciferase (firefly and nano) activity and developed and validated quantitative structure-interference relationship (QSIR) models to predict these nuisance behaviors.
View Article and Find Full Text PDFIn the United States, a pre-market regulatory submission for any medical device that comes into contact with either a patient or the clinical practitioner must include an adequate toxicity evaluation of chemical substances that can be released from the device during its intended use. These substances, also referred to as extractables and leachables, must be evaluated for their potential to induce sensitization/allergenicity, which traditionally has been done in animal assays such as the guinea pig maximization test (GPMT). However, advances in basic and applied science are continuously presenting opportunities to employ new approach methodologies, including computational methods which, when qualified, could replace animal testing methods to support regulatory submissions.
View Article and Find Full Text PDFEnviron Health Perspect
February 2022
Background: Modern chemical toxicology is facing a growing need to Reduce, Refine, and Replace animal tests (Russell 1959) for hazard identification. The most common type of animal assays for acute toxicity assessment of chemicals used as pesticides, pharmaceuticals, or in cosmetic products is known as a "6-pack" battery of tests, including three topical (skin sensitization, skin irritation and corrosion, and eye irritation and corrosion) and three systemic (acute oral toxicity, acute inhalation toxicity, and acute dermal toxicity) end points.
Methods: We compiled, curated, and integrated, to the best of our knowledge, the largest publicly available data sets and developed an ensemble of quantitative structure-activity relationship (QSAR) models for all six end points.
Natural products are continually explored in the development of new bioactive compounds with industrial applications, attracting the attention of scientific research efforts due to their pharmacophore-like structures, pharmacokinetic properties, and unique chemical space. The systematic search for natural sources to obtain valuable molecules to develop products with commercial value and industrial purposes remains the most challenging task in bioprospecting. Virtual screening strategies have innovated the discovery of novel bioactive molecules assessing large compound libraries, favoring the analysis of their chemical space, pharmacodynamics, and their pharmacokinetic properties, thus leading to the reduction of financial efforts, infrastructure, and time involved in the process of discovering new chemical entities.
View Article and Find Full Text PDFSmall, colloidally aggregating molecules (SCAMs) are the most common source of false positives in high-throughput screening (HTS) campaigns. Although SCAMs can be experimentally detected and suppressed by the addition of detergent in the assay buffer, detergent sensitivity is not routinely monitored in HTS. Computational methods are thus needed to flag potential SCAMs during HTS triage.
View Article and Find Full Text PDFSafety assessment is an essential component of the regulatory acceptance of industrial chemicals. Previously, we have developed a model to predict the skin sensitization potential of chemicals for two assays, the human patch test and murine local lymph node assay, and implemented this model in a web portal. Here, we report on the substantially revised and expanded freely available web tool, Pred-Skin version 3.
View Article and Find Full Text PDFIn the past decade we have seen two major Ebola virus outbreaks in Africa, the Zika virus in Brazil and the Americas and the current pandemic of coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There is a strong sense of déjà vu because there are still no effective treatments. In the COVID-19 pandemic, despite being a new virus, there are already drugs suggested as active in in vitro assays that are being repurposed in clinical trials.
View Article and Find Full Text PDFMalaria is an infectious disease that affects over 216 million people worldwide, killing over 445,000 patients annually. Due to the constant emergence of parasitic resistance to the current antimalarial drugs, the discovery of new drug candidates is a major global health priority. Aiming to make the drug discovery processes faster and less expensive, we developed binary and continuous Quantitative Structure-Activity Relationships (QSAR) models implementing deep learning for predicting antiplasmodial activity and cytotoxicity of untested compounds.
View Article and Find Full Text PDFBackground: It was recently demonstrated that the phthalimide N-(4-methyl-phenyl)-4- methylphthalimide (MPMPH-1) has important effects against acute and chronic pain in mice, with a mechanism of action correlated to adenylyl cyclase inhibition. Furthermore, it was also demonstrated that phthalimide derivatives presented antiproliferative and anti-tumor effects. Considering the literature data, the present study evaluated the effects of MPMPH-1 on breast cancer bone metastasis and correlated painful symptom, and provided additional toxicological information about the compound and its possible metabolites.
View Article and Find Full Text PDFChagas disease is a neglected tropical disease (NTD) caused by the protozoan parasite Trypanosoma cruzi and is primarily transmitted to humans by the feces of infected Triatominae insects during their blood meal. The disease affects 6-8 million people, mostly in Latin America countries, and kills more people in the region each year than any other parasite-born disease, including malaria. Moreover, patient numbers are currently increasing in non-endemic, developed countries, such as Australia, Japan, Canada, and the United States.
View Article and Find Full Text PDFVirtual screening (VS) has emerged in drug discovery as a powerful computational approach to screen large libraries of small molecules for new hits with desired properties that can then be tested experimentally. Similar to other computational approaches, VS intention is not to replace or assays, but to speed up the discovery process, to reduce the number of candidates to be tested experimentally, and to rationalize their choice. Moreover, VS has become very popular in pharmaceutical companies and academic organizations due to its time-, cost-, resources-, and labor-saving.
View Article and Find Full Text PDFDespite the recent outbreak of Zika virus (ZIKV), there are still no approved treatments, and early-stage compounds are probably many years away from approval. A comprehensive A-Z review of the recent advances in ZIKV drug discovery efforts is presented, highlighting drug repositioning and computationally guided compounds, including discovered viral and host cell inhibitors. Promising ZIKV molecular targets are also described and discussed, as well as targets belonging to the host cell, as new opportunities for ZIKV drug discovery.
View Article and Find Full Text PDFMalaria is a life-threatening infectious disease caused by parasites of the genus , affecting more than 200 million people worldwide every year and leading to about a half million deaths. Malaria parasites of humans have evolved resistance to all current antimalarial drugs, urging for the discovery of new effective compounds. Given that the inhibition of deoxyuridine triphosphatase of (dUTPase) induces wrong insertions in plasmodial DNA and consequently leading the parasite to death, this enzyme is considered an attractive antimalarial drug target.
View Article and Find Full Text PDFOnly ~1% of all drug candidates against Neglected Tropical Diseases (NTDs) have reached clinical trials in the last decades, underscoring the need for new, safe and effective treatments. In such context, drug repositioning, which allows finding novel indications for approved drugs whose pharmacokinetic and safety profiles are already known, emerging as a promising strategy for tackling NTDs. Chemogenomics is a direct descendent of the typical drug discovery process that involves the systematic screening of chemical compounds against drug targets in high-throughput screening (HTS) efforts, for the identification of lead compounds.
View Article and Find Full Text PDFAntimicrob Agents Chemother
February 2018
Five bis-arylimidamides were assayed as anti- agents by , , and approaches. None were considered to be pan-assay interference compounds. They had a favorable pharmacokinetic landscape and were active against trypomastigotes and intracellular forms, and in combination with benznidazole, they gave no interaction.
View Article and Find Full Text PDFSkin sensitization is a major environmental and occupational health hazard. Although many chemicals have been evaluated in humans, there have been no efforts to model these data to date. We have compiled, curated, analyzed, and compared the available human and LLNA data.
View Article and Find Full Text PDFNew anti-tuberculosis (anti-TB) drugs are urgently needed to battle drug-resistant Mycobacterium tuberculosis strains and to shorten the current 6-12-month treatment regimen. In this work, we have continued the efforts to develop chalcone-based anti-TB compounds by using an in silico design and QSAR-driven approach. Initially, we developed SAR rules and binary QSAR models using literature data for targeted design of new heteroaryl chalcone compounds with anti-TB activity.
View Article and Find Full Text PDFChemically induced skin sensitization is a complex immunological disease with a profound impact on quality of life and working ability. Despite some progress in developing alternative methods for assessing the skin sensitization potential of chemical substances, there is no in vitro test that correlates well with human data. Computational QSAR models provide a rapid screening approach and contribute valuable information for the assessment of chemical toxicity.
View Article and Find Full Text PDFAmerica is still suffering with the outbreak of Zika virus (ZIKV) infection. Congenital ZIKV syndrome has already caused a public health emergency of international concern. However, there are still no vaccines to prevent or drugs to treat the infection caused by ZIKV.
View Article and Find Full Text PDFA new generation of potent hDHODH inhibitors designed by a scaffold-hopping replacement of the quinolinecarboxylate moiety of brequinar, one of the most potent known hDHODH inhibitors, is presented here. Their general structure is characterized by a biphenyl moiety joined through an amide bridge with an acidic hydroxyazole scaffold (hydroxylated thiadiazole, pyrazole and triazole). Molecular modelling suggested that these structures should adopt a brequinar-like binding mode involving interactions with subsites 1, 2 and 4 of the hDHODH binding site.
View Article and Find Full Text PDFBiomed Pharmacother
December 2016
Even with all improvements in both diagnostic and therapeutic techniques, lung cancer remains as the most lethal and prevalent cancer in the world. Therefore, new therapeutic drugs and new strategies of drug combination are necessary to provide treatments that are more efficient. Currently, standard therapy regimen for lung cancer includes platinum drugs, such as cisplatin, oxaliplatin, and carboplatin.
View Article and Find Full Text PDF