Publications by authors named "Rodolphe Obeid"

The leukotriene receptor antagonist Montelukast (MTK) is an approved medication for the treatment of asthma and allergic rhinitis. The existing marketed tablet forms of MTK exhibit inconsistent uptake and bioavailability, which partially explains the presence of a significant proportion of MTK low- and non-responders in the population. Besides that, tablets are suboptimal formulations for patients suffering from dysphagia, for example, seen in patients with neurodegenerative diseases such as Alzheimer's disease, a disease with increasing interest in repurposing of MTK.

View Article and Find Full Text PDF

Poly(ethylene glycol) (PEG) and poly(2-methyl-2-oxazoline) (PMOx) are water-soluble, biocompatible polymers with stealth hemolytic activities. Poly(amino acid) (PAA) end-capped PEG and PMOx were prepared using amino-terminated derivatives of PEG and PMOx as macroinitiators for the ring-opening polymerization of γ-benzyl protected l-glutamate N-carboxyanhydride and S-benzyloxycarbonyl protected l-cysteine N-carboxyanhydride, respectively, in the presence of urea, at room temperature. The molecular weight of the PAA moiety was kept between M(n) = 2200 and 3000 g mol(-1).

View Article and Find Full Text PDF

We describe herein the properties at the air/water (A/W) interface of hydrophobically end-modified (HM) poly(2-isopropyl-2-oxazoline)s (PiPrOx) bearing an n-octadecyl chain on both termini (telechelic HM-PiPrOx) or on one chain end (semitelechelic HM-PiPrOx) for different subphase temperatures and spreading solvents using the Langmuir film balance technique. The polymer interfacial properties revealed by the pi-A isotherms depend markedly on the architecture and molecular weight of the polymer. On cold water subphases (14 degrees C), diffusion of PiPrOx chains onto water takes place for all polymers in the intermediate compressibility region (5mNm(-1)).

View Article and Find Full Text PDF

Mechanical properties of model and natural gels have recently been demonstrated to play an important role in various cellular processes such as adhesion, proliferation, and differentiation, besides events triggered by chemical ligands. Understanding the biomaterial/cell interface is particularly important in many tissue engineering applications and in implant surgery. One of the final goals would be to control cellular processes precisely at the biomaterial surface and to guide tissue regeneration.

View Article and Find Full Text PDF