Sensors (Basel)
November 2021
Accurate measurements of thermal properties is a major concern, for both scientists and the industry. The complexity and diversity of current and future demands (biomedical applications, HVAC, smart buildings, climate change adapted cities, etc.) require making the thermal characterization methods used in laboratory more accessible and portable, by miniaturizing, automating, and connecting them.
View Article and Find Full Text PDFThe dynamic viscosity and rheological properties of two different non-aqueous graphene nano-plates-based nanofluids are experimentally investigated in this paper, focusing on the effects of solid volume fraction and shear rate. For each nanofluid, four solid volume fractions have been considered ranging from 0.1% to 1%.
View Article and Find Full Text PDFEur Phys J E Soft Matter
August 2018
The drying of complex fluids provides a powerful insight into phenomena that take place on time and length scales not normally accessible. An important feature of complex fluids, colloidal dispersions and polymer solutions is their high sensitivity to weak external actions. Thus, the drying of complex fluids involves a large number of physical and chemical processes.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2012
A study of the complex drying dynamics of polymeric mixtures with optical microscopy and gravimetric measurement is presented. Droplet formation is observed, followed by a collapse that leads to the residual craters in the dried film. The process is followed in situ under well-defined temperature and hygrometric conditions to determine the origin and nature of these droplets and craters.
View Article and Find Full Text PDFWe have developed hot-wire anemometry applying the 3omega method. The approach is based on the same heat transfer process as traditional anemometry, but substituting the constant current by a sinusoidal current and using synchronous detection to measure the conductive-convective exchange coefficient and the gas flow rate. Our theoretical model is tested with air flow at 300 K under atmospheric pressure: The experimental results are in agreement with the numerical simulation, justifying the technical choices in the 3omega method and the approximations made.
View Article and Find Full Text PDF