Publications by authors named "Rodolphe Besancenot"

JAK2 activation is the driver mechanism in negative myeloproliferative neoplasms (MPN). These diseases are characterized by an abnormal retention of hematopoietic stem cells within the bone marrow microenvironment and their increased trafficking to extramedullary sites. The CXCL12/CXCR4 axis plays a central role in hematopoietic stem cell/ progenitor trafficking and retention in hematopoietic sites.

View Article and Find Full Text PDF

Megakaryopoiesis is a 2-step differentiation process, regulated by thrombopoietin (TPO), on binding to its cognate receptor myeloproliferative leukemia (MPL). This receptor associates with intracytoplasmic tyrosine kinases, essentially janus kinase 2 (JAK2), which regulates MPL stability and cell-surface expression, and mediates TPO-induced signal transduction. We demonstrate that JAK2 and MPL mediate TPO-induced proliferation arrest and megakaryocytic differentiation of the human megakaryoblastic leukemia cell line UT7-MPL.

View Article and Find Full Text PDF

Each day, 2x10(11) platelets are produced in the human body by a highly regulated mechanism. The biology of platelet formation is unique, as platelets arise from cytoplasmic fragmentation of their marrow precursor, the megakaryocyte (MK). MKs are giant cells that undergo polyploidisation during maturation, through a process called endomitosis leading to a cell with a 2(x)N DNA content.

View Article and Find Full Text PDF

The constitutively active JAK2 V617F mutant is the major determinant of human myeloproliferative neoplasms (MPNs). We show that coexpression of murine JAK2 V617F and the murine thrombopoietin (Tpo) receptor (TpoR, c-MPL) in hematopoietic cell lines or heterozygous knock-in of JAK2 V617F in mice leads to down-modulation of TpoR levels. Enhanced TpoR ubiquitinylation, proteasomal degradation, reduced recycling, and maturation are induced by the constitutive JAK2 V617F activity.

View Article and Find Full Text PDF

Thrombopoietin (TPO) via signaling through its cognate receptor MPL is a key cytokine involved in the regulation of megakaryocyte differentiation leading to platelet production. Mature megakaryocytes are polyploid cells that have arrested DNA replication and cellular proliferation but continue sustained protein synthesis. Here, we show that TPO induces cell-cycle arrest in the megakaryocytic UT7-MPL cell line by the activation of the ERK/MAPK pathway, induction of p21CIP transcription, and senescence markers through EGR1 activation.

View Article and Find Full Text PDF

The MPL (W515L and W515K) mutations have been detected in granulocytes of patients suffering from certain types of primitive myelofibrosis (PMF). It is still unknown whether this molecular event is also present in lymphoid cells and therefore potentially at the hematopoietic stem cell (HSC) level. Toward this goal, we conducted MPL genotyping of mature myeloid and lymphoid cells and of lymphoid/myeloid progenitors isolated from PMF patients carrying the W515 mutations.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Rodolphe Besancenot"

  • - Rodolphe Besancenot's research focuses on the molecular mechanisms regulating hematopoiesis, particularly through the role of oncogenic mutations and cytokine signaling in megakaryocyte differentiation and function.
  • - His studies reveal how JAK2 mutations, such as JAK2 V617F, affect thrombopoietin receptor regulation and megakaryocyte maturation, impacting platelet production and contributing to the pathology of myeloproliferative neoplasms.
  • - Besancenot's findings emphasize the importance of the CXCL12/CXCR4 axis in hematopoietic stem cell retention and trafficking, highlighting potential therapeutic targets for conditions involving abnormal hematopoiesis.