Several computational frameworks and workflows that recover genomes from prokaryotes, eukaryotes and viruses from metagenomes exist. Yet, it is difficult for scientists with little bioinformatics experience to evaluate quality, annotate genes, dereplicate, assign taxonomy and calculate relative abundance and coverage of genomes belonging to different domains. MuDoGeR is a user-friendly tool tailored for those familiar with Unix command-line environment that makes it easy to recover genomes of prokaryotes, eukaryotes and viruses from metagenomes, either alone or in combination.
View Article and Find Full Text PDFMotivation: Computational analysis of large-scale metagenomics sequencing datasets have proven to be both incredibly valuable for extracting isolate-level taxonomic, and functional insights from complex microbial communities. However, due to an ever-expanding ecosystem of metagenomics-specific methods and file-formats, designing studies which implement seamless and scalable end-to-end workflows, and exploring the massive amounts of output data have become studies unto themselves. One-click bioinformatics pipelines have helped to organize these tools into targeted workflows, but they suffer from general compatibility and maintainability issues.
View Article and Find Full Text PDFFront Microbiol
January 2023
We present the draft genome sequence of Fusarium equiseti strain K3, a fungus isolated from a hexachlorocyclohexane (HCH)-contaminated soil (Kitengela, Kenya). The 37.88-Mb draft genome sequence consists of 206 contigs, 12,311 predicted protein-coding sequences, and 261 tRNA sequences.
View Article and Find Full Text PDF