Microsc Res Tech
November 2016
Bites by Bothrops snakes normally induce local pain, haemorrhage, oedema and myonecrosis. Mammalian isolated nerve-muscle preparations exposed to Bothrops venoms and their phospholipase A toxins (PLA ) can exhibit a neurotoxic pattern as increase in frequency of miniature end-plate potentials (MEPPs) as well as in amplitude of end-plate potentials (EPPs); neuromuscular facilitation followed by complete and irreversible blockade without morphological evidence for muscle damage. In this work, we analysed the ultrastructural damage induced by Bothrops jararacussu and Bothrops bilineatus venoms and their PLA toxins (BthTX-I and Bbil-TX) in mouse isolated nerve-phrenic diaphragm preparations (PND).
View Article and Find Full Text PDFNeuromuscular preparations exposed to B. marajoensis venom show increases in the frequency of miniature end-plate potentials and twitch tension facilitation followed by presynaptic neuromuscular paralysis, without evidences of muscle damage. Considering that presynaptic toxins interfere into the machinery involved in neurotransmitter release (synaptophysin, synaptobrevin, and SNAP25 proteins), the main objective of this communication is to analyze, by immunofluorescence and western blotting, the expression of the synaptic proteins, synaptophysin, synaptobrevin, and SNAP25 and by myography, light, and transmission electron microscopy the pathology of motor nerve terminals and skeletal muscle fibres of chick biventer cervicis preparations (CBC) exposed in vitro to BmjeTX-I and BmjeTX-II toxins from B.
View Article and Find Full Text PDF