We study the collapse in spherical symmetry of a massless scalar field minimally coupled to gravity using the semiclassical equations that are expected from loop quantum gravity. We find the critical behavior of the mass as a function of the parameters of the initial data similar to that found by Choptuik in classical general relativity for a large set of initial data and values of the polymerization parameter. Contrary to wide expectations for quantum gravity, our semiclassical field equations have an exact scale invariance, as do the classical field equations.
View Article and Find Full Text PDFThe Montevideo interpretation of quantum mechanics, which consists of supplementing environmental decoherence with fundamental limitations in measurement stemming from gravity, has been described in several publications. However, some of them appeared before the full picture provided by the interpretation was developed. As such, it can be difficult to get a good understanding via the published literature.
View Article and Find Full Text PDFWe quantize spherically symmetric vacuum gravity without gauge fixing the diffeomorphism constraint. Through a rescaling, we make the algebra of Hamiltonian constraints Abelian, and therefore the constraint algebra is a true Lie algebra. This allows the completion of the Dirac quantization procedure using loop quantum gravity techniques.
View Article and Find Full Text PDFPhys Rev Lett
February 2012
We present a gauge fixing of gravity coupled to a scalar field in spherical symmetry such that the Hamiltonian is an integral over space of a local density. Such a formulation had proved elusive over the years. As in any gauge fixing, it works for a restricted set of initial data.
View Article and Find Full Text PDFWe consider the quantization of the complete extension of the Schwarzschild space-time using spherically symmetric loop quantum gravity. We find an exact solution corresponding to the semiclassical theory. The singularity is eliminated but the space-time still contains a horizon.
View Article and Find Full Text PDFHere we study maximum running speed (MRS) limitations on a previously proposed model of energetic and muscle-tendon unit functions on running mammals. In the present work the MRS and some anatomical or physiological limitations are estimated for mammals with body mass between 1.5 and 300 kg.
View Article and Find Full Text PDFHere we propose a model of energetic costs and the muscle-tendon unit function on running mammals. The main goal is to set a simple theoretical framework which gives an understanding of the biomechanical principles behind the size, speed and anatomical variations of the energetic costs of running mammals. The model is a point-like mass withstood by a two-segment leg with an extensor muscle serially attached to a tendon.
View Article and Find Full Text PDFWe apply the "consistent discretization" approach to general relativity leaving the spatial slices continuous. The resulting theory is free of the diffeomorphism and Hamiltonian constraints, but one can impose the diffeomorphism constraint to reduce its space of solutions and the constraint is preserved exactly under the discrete evolution. One ends up with a theory that has as physical space what is usually considered the kinematical space of loop quantum geometry, given by diffeomorphism invariant spin networks endowed with appropriate rigorously defined diffeomorphism invariant measures and inner products.
View Article and Find Full Text PDFOrdinary quantum mechanics is formulated on the basis of the existence of an ideal classical clock external to the system under study. This is clearly an idealization. As emphasized originally by Salecker and Wigner and more recently by others, there exist limits in nature to how "classical" even the best possible clock can be.
View Article and Find Full Text PDFA mechanical model for the determination of maximum speed in terrestrial tetrapods, designed for application to extinct species, is proposed. Only external bone measures and average body mass estimations are used as input data, and the hypothesis is made that leg bones are strong enough to endure the stress of running at maximum speed at a certain universal safety factor. The model is applied to a broad sample of living mammalian species to test its predictive power, and it is found to provide very good estimates of maximum running speed.
View Article and Find Full Text PDFIt has long been recognized that lattice gauge theory formulations, when applied to general relativity, conflict with the invariance of the theory under diffeomorphisms. We analyze discrete lattice general relativity and develop a canonical formalism that allows one to treat constrained theories in Lorentzian signature space-times. The presence of the lattice introduces a "dynamical gauge" fixing that makes the quantization of the theories conceptually clear, albeit computationally involved.
View Article and Find Full Text PDF