Publications by authors named "Rodolakis F"

Article Synopsis
  • The study explores the behavior of rare earth nickelates (RENiO) during a phase transition from metal to insulator, focusing on how electron-lattice interactions lead to bond disproportionation and spin order among nickel and ligand spins.
  • Researchers investigated a hypothesis that self-doped ligand holes create local spin moments that couple antiferromagnetically with Ni spins, leading to long-range bond and spin order, specifically in NdNiO thin films.
  • Using magnetic resonant X-ray scattering, the study found spiral spin patterns in the material that show an unexpected chiral magnetic configuration, hinting at a possible link between this noncollinear magnetic state and unusual ferroelectric characteristics.
View Article and Find Full Text PDF
Article Synopsis
  • The study addresses the challenges in characterizing small nanostructures, specifically ferroelectric and ferromagnetic skyrmions, due to their complex three-dimensional structures.
  • Resonant elastic x-ray scattering (REXS) has been identified as a promising technique for investigating these nanostructures, particularly for studying the chirality of spin textures.
  • The research introduces a modeling framework for applying REXS to charge quadrupole moments in ferroelectrics, demonstrating its effectiveness in analyzing the coexistence and structure of polar skyrmions with mixed chirality.
View Article and Find Full Text PDF

The shape of 3d-orbitals often governs the electronic and magnetic properties of correlated transition metal oxides. In the superconducting cuprates, the planar confinement of the [Formula: see text] orbital dictates the two-dimensional nature of the unconventional superconductivity and a competing charge order. Achieving orbital-specific control of the electronic structure to allow coupling pathways across adjacent planes would enable direct assessment of the role of dimensionality in the intertwined orders.

View Article and Find Full Text PDF

Bulk SrTiO is a well-known band insulator and the most common substrate used in the field of complex oxide heterostructures. Its surface and interface with other oxides, however, have demonstrated a variety of remarkable behaviors distinct from those expected. In this work, using a suite of in situ techniques to monitor both the atomic and electronic structures of the SrTiO (001) surface prior to and during growth, the disappearance and re-appearance of a 2D electron gas (2DEG) is observed after the completion of each SrO and TiO monolayer, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • Resonant elastic X-ray scattering (REXS) is a powerful technique that combines the spatial resolution of diffraction with electronic information, enabling detailed studies of solid-state systems and their magnetic, charge, spin, and orbital properties.
  • A new application of REXS focuses on understanding the chiral structure of electric polarization in ferroelectric oxide superlattices, specifically analyzing the polarization vectors through an anisotropic tensor related to the quadrupole moment.
  • The authors present a thorough theoretical framework to interpret experimental results from Ti L-edge REXS of a polar vortex array in a PbTiO/SrTiO superlattice, suggesting that REXS can be a valuable tool for exploring both electric and magnetic properties of ch
View Article and Find Full Text PDF

Habituation and sensitization (nonassociative learning) are among the most fundamental forms of learning and memory behavior present in organisms that enable adaptation and learning in dynamic environments. Emulating such features of intelligence found in nature in the solid state can serve as inspiration for algorithmic simulations in artificial neural networks and potential use in neuromorphic computing. Here, we demonstrate nonassociative learning with a prototypical Mott insulator, nickel oxide (NiO), under a variety of external stimuli at and above room temperature.

View Article and Find Full Text PDF

New developments in the field of topological matter are often driven by materials discovery, including novel topological insulators, Dirac semimetals, and Weyl semimetals. In the last few years, large efforts have been made to classify all known inorganic materials with respect to their topology. Unfortunately, a large number of topological materials suffer from non-ideal band structures.

View Article and Find Full Text PDF

Glutamate, one of the main neurotransmitters in the brain, plays a critical role in communication between neurons, neuronal development, and various neurological disorders. Extracellular measurement of neurotransmitters such as glutamate in the brain is important for understanding these processes and developing a new generation of brain-machine interfaces. Here, we demonstrate the use of a perovskite nickelate-Nafion heterostructure as a promising glutamate sensor with a low detection limit of 16 nM and a response time of 1.

View Article and Find Full Text PDF

Sensitivity to the "bulk" oxygen core orbital makes hard X-ray photoelectron spectroscopy (HAXPES) an appealing technique for studying oxygen redox candidates. Various studies have reported an additional O 1s peak (530-531 eV) at high voltages, which has been considered a direct signature of the bulk oxygen redox process. Here, we find the emergence of a 530.

View Article and Find Full Text PDF

Van der Waals (vdW) materials with magnetic order have been heavily pursued for fundamental physics as well as for device design. Despite the rapid advances, so far, they are mainly insulating or semiconducting, and none of them has a high electronic mobility-a property that is rare in layered vdW materials in general. The realization of a high-mobility vdW material that also exhibits magnetic order would open the possibility for novel magnetic twistronic or spintronic devices.

View Article and Find Full Text PDF

Point defects, such as oxygen vacancies, control the physical properties of complex oxides, relevant in active areas of research from superconductivity to resistive memory to catalysis. In most oxide semiconductors, electrons that are associated with oxygen vacancies occupy the conduction band, leading to an increase in the electrical conductivity. Here we demonstrate, in contrast, that in the correlated-electron perovskite rare-earth nickelates, NiO ( is a rare-earth element such as Sm or Nd), electrons associated with oxygen vacancies strongly localize, leading to a dramatic decrease in the electrical conductivity by several orders of magnitude.

View Article and Find Full Text PDF

Experimental validation of the predicted melt phase behavior of A/B mixed brush on planar substrate is presented using poly(methyl methacrylate) (A)/ polystyrene (B) (PMMA/PS) with equal number of A/B chains as an example. Well-defined mixed A/B brushes are synthesized using a single component inimer coating to achieve high grafting density (0.9 chains/nm), uniformity of grafting sites, and predictable chain length.

View Article and Find Full Text PDF

We describe a series of microcalorimeter X-ray spectrometers designed for a broad suite of measurement applications. The chief advantage of this type of spectrometer is that it can be orders of magnitude more efficient at collecting X-rays than more traditional high-resolution spectrometers that rely on wavelength-dispersive techniques. This advantage is most useful in applications that are traditionally photon-starved and/or involve radiation-sensitive samples.

View Article and Find Full Text PDF

V(2)O(3) is the prototype system for the Mott transition, one of the most fundamental phenomena of electronic correlation. Temperature, doping or pressure induce a metal-to-insulator transition (MIT) between a paramagnetic metal (PM) and a paramagnetic insulator. This or related MITs have a high technological potential, among others, for intelligent windows and field effect transistors.

View Article and Find Full Text PDF

The changes in the electronic structure of V2O3 across the metal-insulator transition induced by temperature, doping, and pressure are identified using high resolution x-ray absorption spectroscopy at the V pre-K edge. Contrary to what has been taken for granted so far, the metallic phase reached under pressure is shown to differ from the one obtained by changing doping or temperature. Using a novel computational scheme, we relate this effect to the role and occupancy of the a{1g} orbitals.

View Article and Find Full Text PDF

We present an angle resolved photoemission study of V2O3, a prototype system for the observation of Mott transitions in correlated materials. We show that the spectral features corresponding to the quasiparticle peak in the metallic phase present a marked wave vector dependence, with a stronger intensity along the GammaZ direction. The analysis of their intensity for different probing depths shows the existence of a characteristic length scale for the attenuation of coherent electronic excitations at the surface.

View Article and Find Full Text PDF