Context: Rapid influenza diagnostic tests (RIDTs) are becoming increasingly accurate, available, and reliable as the first line of testing when suspecting influenza infections, although the global burden of influenza infections remains high. Rapid diagnosis of influenza infections has been shown to reduce improper or delayed treatment and to increase access to diagnostic measures in public health, primary care, and hospital-based settings.
Objectives: As the use of RIDTs continues to expand in all healthcare settings, there is a multitude of molecular techniques being employed by these various testing platforms.
The impact of viral diseases on human health is becoming increasingly prevalent globally with the burden of disease being shared between resource-rich and poor areas. As seen in the global pandemic caused by SARS-CoV-2, there is a need to establish viral detection techniques applicable to resource-limited areas that provide sensitive and specific testing with a logistically conscious mindset. Herein, we describe a direct-to-PCR technology utilizing mechanical homogenization prior to viral PCR detection, which allows the user to bypass traditional RNA extraction techniques for accurate detection of human coronavirus.
View Article and Find Full Text PDFEfficient and effective viral detection methodologies are a critical piece in the global response to COVID-19, with PCR-based nasopharyngeal and oropharyngeal swab testing serving as the current gold standard. With over 100 million confirmed cases globally, the supply chains supporting these PCR testing efforts are under a tremendous amount of stress, driving the need for innovative and accurate diagnostic solutions. Herein, the utility of a direct-to-PCR method of SARS-CoV-2 detection grounded in mechanical homogenization is examined for reducing resources needed for testing while maintaining a comparable sensitivity to the current gold standard workflow of nasopharyngeal and oropharyngeal swab testing.
View Article and Find Full Text PDFBackground: Currently, one of the most reliable methods for viral infection detection are polymerase chain reaction (PCR) based assays. This process is time and resource heavy, requiring multiple steps of lysis, extraction, purification, and amplification procedures. Herein, we have developed a method to detect virus off swabs using solely shaker-mill based mechanical lysis and the transfer of the viral lysate directly to a PCR assay for virus detection, bypassing the substantial reagent and time investments required for extraction and purification steps.
View Article and Find Full Text PDFCell culture is one of the most common methods used to recapitulate a human disease environment in a laboratory setting. Cell culture techniques are used to grow and maintain cells of various types including those derived from primary tissues, such as stem cells and cancer tumors. However, a major confounding factor with cell culture is the use of serum and animal (xeno) products in the media.
View Article and Find Full Text PDFBackground: Sindbis virus (SINV) causes age-dependent encephalitis in mice, and therefore serves as a model to study viral encephalitis. SINV is used as a vector for the delivery of genes into selected neural stem cell lines; however, the toxicity and side effects of this vector have rarely been discussed. In this context, we investigated the cellular responses of human embryonic stem cell (hESCs) derived neural progenitors (hNPCs) to SINV infection by assessing susceptibility of the cells to SINV infection, analyzing the effect of infection on cell proliferation and cell death, and examining the impact of SINV infection on hNPCs markers of stemness.
View Article and Find Full Text PDFBirth Defects Res B Dev Reprod Toxicol
June 2013
Ethanol is a powerful substance and, when consumed during pregnancy, has significant psychoactive and developmental effects on the developing fetus. These abnormalities include growth retardation, neurological deficits, and behavioral and cognitive deficiencies, commonly referred to as fetal alcohol spectrum disorder. The effect of ethanol has been reported to affect cellular development on the embryonic level, however, not much is known about mutations contributing to the influence of ethanol.
View Article and Find Full Text PDFGlioblastoma (GBM) is a highly aggressive primary brain tumor with a poor prognosis. Despite aggressive therapy with surgery, radiotherapy, and chemotherapy, nearly all patients succumb to disease within 2 years. Several studies have supported the presence of stem-like cells in brain tumor cultures that are CD133-positive, are capable of self-renewal, and give rise to all cell types found within the tumor, potentially perpetuating growth.
View Article and Find Full Text PDFBackground: Fetal alcohol syndrome is an important clinical problem. Human embryonic stem cells (hESC) have not been widely used to study developmental alcohol toxicity. Here we document the phenotype of hESC exposed to clinically-relevant, low dose ethanol (20mM).
View Article and Find Full Text PDFIonotropic receptors are the target for most mood-defining compounds. Chronic exposure to ethanol (EtOH) alters receptor-mediated responses and the numbers of these channels and specific subunits; as well as induces anxiolytic, sedative, and anesthetic activity in the human brain. However, very little is known regarding the effects of EtOH on ionotropic receptor transcription during early human development (preimplantation).
View Article and Find Full Text PDFAlcohol use is common and consumption during pregnancy has been shown to lead to a myriad of physical and neurologic abnormalities commonly referred to as fetal alcohol spectrum disorder. Substance addiction, which includes alcohol, has been shown to involve the major nicotinic acetylcholine receptor subunit CHRNA5. Using human embryonic stem cells as a model of early human development, we show that low concentrations of ethanol (20mM) can alter the expression of CHRNA5.
View Article and Find Full Text PDFAlcohol affects approximately 1% (40,000) of new born infants each year and is the main preventable cause of mental retardation in the US. Ethanol alters cell signaling and promotes apoptosis and differentiation. Heparin-binding epidermal growth factor-like growth factor (HB-EGF), a member of the EGF family of growth factors, has been reported to prevent apoptosis and differentiation.
View Article and Find Full Text PDFApoptosis or programmed cell death is an important outcome of cell fate and is influenced by several factors. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a member of the EGF family of growth factors and is synthesized as a membrane-associated precursor molecule (proHB-EGF). Under stressful conditions proHB-EGF is proteolytically cleaved and released as a soluble ligand (sHB-EGF) that activates the EGF receptor.
View Article and Find Full Text PDFCell surface markers are key tools that are frequently used to characterize and separate mixed cell populations. Existing cell surface markers used to define murine embryonic stem cells (mESCs) such as stage-specific embryonic antigen 1 (SSEA1), Forssman antigen (FA), alkaline phosphatase (AP), and CD9 are limiting, however, because they do not unambiguously define the pluripotent state and are not reliable indicators of differentiation commitment. To identify glycan cell surface markers that would circumvent this problem, we used a panel of 18 lectins to identify epitopes specifically elevated on the surface of mESCs, which, during differentiation, decrease with kinetics that precede currently used markers such as CD9, SSEA1, FA, and AP.
View Article and Find Full Text PDF