High pressure measurements in most scientific fields rely on metal vessels given the superior tensile strength of metals. We introduce high pressure magnetic resonance imaging (MRI) measurements with metallic vessels. The developed MRI compatible metallic pressure vessel concept is very general in application.
View Article and Find Full Text PDFThis paper proposes the possibility of spatially resolved MRI measurements undertaken inside metallic cells. MRI has been rarely usable inside conducting vessels due to the eddy currents in the walls caused by switching magnetic field gradients, which render most advanced MRI pulse sequences impossible. We propose magnetic field gradient waveform monitoring (MFGM) for MRI of samples inside metallic cells.
View Article and Find Full Text PDFNumerous methods have been developed to measure MRI gradient waveforms and k-space trajectories. The most promising new strategy appears to be magnetic field monitoring with RF microprobes. Multiple RF microprobes may record the magnetic field evolution associated with a wide variety of imaging pulse sequences.
View Article and Find Full Text PDFA multiple echo, single point imaging technique, employing a local surface coil probe, is presented for examination of thin film samples. Depth images with a nominal resolution of 5 microm were acquired with acquisition times on the order of 10 min. The method may be used to observe dynamic phenomenon such as polymerization, wetting, and drying in thin film samples.
View Article and Find Full Text PDF