Publications by authors named "Rodney L Honeycutt"

Aim: Comprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroecology. We provide global range maps for the native ranges of all extant mammal species harmonised to the taxonomy of the Mammal Diversity Database (MDD) mobilised from two sources, the (HMW) and the (CMW).

View Article and Find Full Text PDF

Climate change-induced extinctions are estimated to eliminate one in six known species by the end of the century. One major factor that will contribute to these extinctions is extreme climatic events. Here, we show the ecological impacts of recent record warm air temperatures and simultaneous peak drought conditions in California.

View Article and Find Full Text PDF

Objective: The ruffed grouse, Bonasa umbellus, is broadly distributed across North America and displays considerable taxonomic diversity. Except for a genetic study of some western populations of ruffed grouse, nothing is known about genetic variation in other regions of Canada and the United States. Our objective is to examine patterns of mitochondrial DNA (mtDNA) variation in the ruffed grouse across western, central, and eastern parts of its distribution.

View Article and Find Full Text PDF

We introduce a mathematical model for studying the population dynamics under drought of the California newt (Taricha torosa), a species of special concern in the state of California. Since 2012, California has experienced a record-setting drought, and multiple studies predict drought conditions currently underway will persist and even increase in severity. Recent declines and local extinctions of California newt populations in Santa Monica Mountain streams motivate our study of the impact of drought on newt population sizes.

View Article and Find Full Text PDF

The role of genetic relatedness in the evolution of eusociality has been the topic of much debate, especially when contrasting eusocial insects with vertebrates displaying reproductive altruism. The naked mole-rat, Heterocephalus glaber, was the first described eusocial mammal. Although this discovery was based on an ecological constraints model of eusocial evolution, early genetic studies reported high levels of relatedness in naked mole-rats, providing a compelling argument that low dispersal rates and consanguineous mating (inbreeding as a mating system) are the driving forces for the evolution of this eusocial species.

View Article and Find Full Text PDF

Understanding of relationships between morphology and ecological performance can help to reveal how natural selection drives biological diversification. We investigate relationships between feeding behavior, foraging performance and morphology within a diverse group of teleost fishes, and examine the extent to which associations can be explained by evolutionary relatedness. Morphological adaptation associated with sediment sifting was examined using a phylogenetic linear discriminant analysis on a set of ecomorphological traits from 27 species of Neotropical cichlids.

View Article and Find Full Text PDF

Ocelots (Leopardus pardalis) in the United States currently exhibit low levels of genetic diversity. One hypothesis for this observation is that habitat fragmentation, resulting from human induced changes in the landscape during the 20(th) century, created island populations with highly reduced gene flow and increased genetic drift and inbreeding. In an effort to investigate this, we used a portion of the mitochondrial control region and 11 autosomal microsatellite loci to examine historical levels of genetic diversity and infer temporal changes in ocelot populations between 1853 and 2005.

View Article and Find Full Text PDF

Premise Of The Study: Microsatellite (simple sequence repeat [SSR]) markers were developed for Ceanothus megacarpus, a chaparral species endemic to coastal southern California, to investigate potential processes (e.g., fragmentation, genetic drift, and interspecific hybridization) responsible for the genetic structure within and among populations distributed throughout mainland and island populations.

View Article and Find Full Text PDF

Most contemporary studies of adaptive radiation focus on relatively recent and geographically restricted clades. It is less clear whether diversification of ancient clades spanning entire continents is consistent with adaptive radiation. We used novel fossil calibrations to generate a chronogram of Neotropical cichlid fishes and to test whether patterns of lineage and morphological diversification are congruent with hypothesized adaptive radiations in South and Central America.

View Article and Find Full Text PDF

Genera within the South American cichlid tribe Geophagini display specialized feeding and reproductive strategies, with some taxa specialized for both substrate-sifting and mouth brooding. Several lineages within the clade also possess an epibranchial lobe (EBL), a unique pharyngeal structure that has been proposed to have a function in feeding and/or mouth brooding. A recently published genus-level phylogeny of Neotropical cichlids was used as the evolutionary framework for investigating the evolution of morphological features presumably correlated with diet and mouth brooding in the tribe Geophagini.

View Article and Find Full Text PDF

Previous analyses of relations, divergence times, and diversification patterns among extant mammalian families have relied on supertree methods and local molecular clocks. We constructed a molecular supermatrix for mammalian families and analyzed these data with likelihood-based methods and relaxed molecular clocks. Phylogenetic analyses resulted in a robust phylogeny with better resolution than phylogenies from supertree methods.

View Article and Find Full Text PDF

The increased battery of molecular markers, derived from comparative genomics, is aiding our understanding of the genetics of domestication. The recent BMC Biology article pertaining to the evolution of small size in dogs is an example of how such methods can be used to study the origin and diversification of the domestic dog. We are still challenged, however, to appreciate the genetic mechanisms responsible for the phenotypic diversity seen in 'our best friend'.

View Article and Find Full Text PDF

Neotropical cichlid fishes comprise approximately 60 genera and at least 600 species, but despite this diversity, their phylogeny is only partially understood, which limits taxonomic, ecological and evolutionary research. We report the largest molecular phylogeny of Neotropical cichlids produced to date, combining data from three mitochondrial and two nuclear markers for 57 named genera and 154 species from South and Central America. Neotropical cichlids (subfamily Cichlinae) were strongly monophyletic and were grouped into two main clades in which the genera Retroculus (Tribe Retroculini) and Cichla (Cichlini) were sister to a monophyletic group containing all other lineages.

View Article and Find Full Text PDF

Comparative morphological and developmental studies, including a recent comparative study of tooth development among the Afrotherian mammals, are indicating the types of genetic mechanisms responsible for the evolution of morphological differences among major mammalian groups.

View Article and Find Full Text PDF

Background: The dusky dolphin (Lagenorhynchus obscurus) is distributed along temperate, coastal regions of New Zealand, South Africa, Argentina, and Peru where it feeds on schooling anchovy, sardines, and other small fishes and squid tightly associated with temperate ocean sea surface temperatures. Previous studies have suggested that the dusky dolphin dispersed in the Southern Hemisphere eastward from Peru via a linear, temperate dispersal corridor provided by the circumpolar west-wind drift. With new mitochondrial and nuclear DNA sequence data, we propose an alternative phylogeographic history for the dusky dolphin that was structured by paleoceanographic conditions that repeatedly altered the distribution of its temperate prey species during the Plio-Pleistocene.

View Article and Find Full Text PDF

The mitochondrial DNA (mtDNA) control regions of 125 domestic dogs (Canis familiaris) encompassing 43 breeds, as well as one coyote and two wolves were sequenced and subsequently examined for sequence variation in an effort to construct a reference dog mtDNA data set for forensic analysis. Forty informative variable sites were identified that described 45 haplotypes, 29 of which were observed only once. Substantial variation was found both within and among breeds in the mtDNA derived from tissue, indicating that analysis of the mtDNA derived from dog hairs could be a valuable, discriminating piece of evidence in forensic investigations.

View Article and Find Full Text PDF

Background: Traditionally, most studies employing data from whole mitochondrial genomes to diagnose relationships among the major lineages of mammals have attempted to exclude regions that potentially complicate phylogenetic analysis. Components generally excluded are 3rd codon positions of protein-encoding genes, the control region, rRNAs, tRNAs, and the ND6 gene (encoded on the opposite strand). We present an approach that includes all the data, with the exception of the control region.

View Article and Find Full Text PDF

Background: Dolphins of the genus Lagenorhynchus are anti-tropically distributed in temperate to cool waters. Phylogenetic analyses of cytochrome b sequences have suggested that the genus is polyphyletic; however, many relationships were poorly resolved. In this study, we present a combined-analysis phylogenetic hypothesis for Lagenorhynchus and members of the subfamily Lissodelphininae, which is derived from two nuclear and two mitochondrial data sets and the addition of 34 individuals representing 9 species.

View Article and Find Full Text PDF

Peromyscus sejugis, a peripheral isolate of Peromyscus maniculatus, is a threatened taxon endemic to 2 small islands in the Sea of Cortés. Although its insularity makes the specific recognition of P. sejugis inherently problematic, resolution of this problem has important conservation implications.

View Article and Find Full Text PDF

Variation at 12 pure-repeat dinucleotide microsatellites from Peromyscus maniculatus was analyzed for samples of all species in the P. maniculatus species group and P. leucopus.

View Article and Find Full Text PDF

Nucleotide sequences from the mitochondrial ND4 gene and the nuclear RAG2 gene were used to derive the most extensive molecular phylogeny to date for the Neotropical cichlid subfamily Geophaginae. Previous hypotheses of relationships were tested in light of these new data and a synthesis of all existing molecular information was provided. Novel phylogenetic findings included support for : (1) a 'Big Clade' containing the genera Geophagus sensu lato, Gymnogeophagus, Mikrogeophagus, Biotodoma, Crenicara, and Dicrossus; (2) a clade including the genera Satanoperca, Apistogramma, Apistogrammoides, and Taeniacara; and (3) corroboration for Kullander's clade Acarichthyini.

View Article and Find Full Text PDF

Amino acid replacements encoded by the prion protein gene (PRNP) have been associated with transmissible and hereditary spongiform encephalopathies in mammalian species. However, an association between bovine spongiform encephalopathy (BSE) and bovine PRNP exon 3 has not been detected. Moreover, little is currently known regarding the mechanisms of evolution influencing the bovine PRNP gene.

View Article and Find Full Text PDF

Nucleotide sequences of the mitochondrial cytochrome b gene are reported from bats of the genus Myotis including species of the endemic southern African subgenus Cistugo, Myotis (Cistugo) sebrai and Myotis (Cistugo) lesueuri. We also examined Myotis annectans from Southeast Asia, and Myotis macropus from Australia. The two species of Cistugo and Myotis annectans represent the only species of Myotis to differ in chromosome number from the common 2n=44 found in >40 species.

View Article and Find Full Text PDF

Cryptomys represents the most speciose and widely distributed genus of the Bathyergidae (Mammalia; Rodentia), a family of mole-rats endemic to sub-Saharan Africa. Throughout its range in southern, central, and western Africa, Cryptomys displays diversity in terms of morphology, patterns of behavior, and chromosome number, thus complicating the systematics of the group. A molecular phylogeny was obtained by separate and combined analyses of the mitochondrial 12S rRNA and intron I of the nuclear transthyretin gene for chromosomally and geographically diverse populations of Cryptomys.

View Article and Find Full Text PDF

Recent molecular studies have concluded that the genus Myospalax evolved from within the rodent subfamily Cricetinae. This conclusion was tested using the complete sequences from the mitochondrial 12S rRNA and cytochrome b genes. Based on our analyses, Myospalax appears to be sister to a clade containing the subfamilies Spalacinae and Rhizomyinae, and all three of these lineages appear to be basal to the superfamily Muroidea.

View Article and Find Full Text PDF