MicroRNAs (miRNAs) have emerged as critical regulators of cellular metabolism. To characterise miRNAs crucial to the maintenance of hepatic lipid homeostasis, we examined the overlap between the miRNA signature associated with inhibition of peroxisome proliferator activated receptor-α (PPAR-α) signaling, a pathway regulating fatty acid metabolism, and the miRNA profile associated with 25-hydroxycholesterol treatment, an oxysterol regulator of sterol regulatory element binding protein (SREBP) and liver X receptor (LXR) signaling. Using this strategy, we identified microRNA-7 (miR-7) as a PPAR-α regulated miRNA, which activates SREBP signaling and promotes hepatocellular lipid accumulation.
View Article and Find Full Text PDFImmune regulation of cellular metabolism can be responsible for successful responses to invading pathogens. Viruses alter their hosts' cellular metabolism to facilitate infection. Conversely, the innate antiviral responses of mammalian cells target these metabolic pathways to restrict viral propagation.
View Article and Find Full Text PDFMany viruses including the hepatitis C virus (HCV) induce changes to the infected host cell metabolism that include the up-regulation of lipogenesis to create a favorable environment for the virus to propagate. The enzyme acetyl-CoA carboxylase (ACC) polymerizes to form a supramolecular complex that catalyzes the rate-limiting step of de novo lipogenesis. The small molecule natural product Soraphen A (SorA) acts as a nanomolar inhibitor of acetyl-CoA carboxylase activity through disruption of the formation of long highly active ACC polymers from less active ACC dimers.
View Article and Find Full Text PDFHepatitis C virus (HCV) replication is dependent on the formation of specialized membrane structures; however, the host factor requirements for the formation of these HCV complexes remain unclear. Herein, we demonstrate that inhibition of stearoyl-CoA desaturase 1 (SCD-1) halts the biosynthesis of unsaturated fatty acids, such as oleic acid, and negatively modulates HCV replication. Unsaturated fatty acids play key roles in membrane curvature and fluidity.
View Article and Find Full Text PDFCell-death-inducing DFF45-like effector B (CIDEB) is an apoptotic host factor, which was recently found to also regulate hepatic lipid homeostasis. Herein we delineate the relevance of these dual roles of CIDEB in apoptosis and lipid metabolism in the context of hepatitis C virus (HCV) replication. We demonstrate that HCV upregulates CIDEB expression in human serum differentiated hepatoma cells.
View Article and Find Full Text PDFHost cell lipid droplets (LD) are essential in the hepatitis C virus (HCV) life cycle and are targeted by the viral capsid core protein. Core-coated LDs accumulate in the perinuclear region and facilitate viral particle assembly, but it is unclear how mobility of these LDs is directed by core. Herein we used two-photon fluorescence, differential interference contrast imaging, and coherent anti-Stokes Raman scattering microscopies, to reveal novel core-mediated changes to LD dynamics.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2013
Human hepatocytes constitutively express the lipid droplet (LD) associated protein cell death-inducing DFFA-like effector B (CIDEB). CIDEB mediates LD fusion, as well as very-low-density lipoprotein (VLDL) maturation. However, there are limited cell culture models readily available to study CIDEB's role in these biological processes, as hepatoma cell lines express negligible levels of CIDEB.
View Article and Find Full Text PDFUnlabelled: MicroRNAs (miRNAs) are small RNAs that posttranscriptionally regulate gene expression. Their aberrant expression is commonly linked with diseased states, including hepatitis C virus (HCV) infection. Herein, we demonstrate that HCV replication induces the expression of miR-27 in cell culture and in vivo HCV infectious models.
View Article and Find Full Text PDFHepatitis C virus (HCV) co-opts hepatic lipid pathways to facilitate its pathogenesis. The virus alters cellular lipid biosynthesis and trafficking, and causes an accumulation of lipid droplets (LDs) that gives rise to hepatic steatosis. Little is known about how these changes are controlled at the molecular level, and how they are related to the underlying metabolic states of the infected cell.
View Article and Find Full Text PDFCellular biomolecules contain unique molecular vibrations that can be visualized by coherent anti-Stokes Raman scattering (CARS) microscopy without the need for labels. Here we review the application of CARS microscopy for label-free imaging of cells and tissues using the natural vibrational contrast that arises from biomolecules like lipids as well as for imaging of exogenously added probes or drugs. High-resolution CARS microscopy combined with multimodal imaging has allowed for dynamic monitoring of cellular processes such as lipid metabolism and storage, the movement of organelles, adipogenesis and host-pathogen interactions and can also be used to track molecules within cells and tissues.
View Article and Find Full Text PDFMicroRNA-122 positively modulates hepatitis C virus (HCV) through direct interactions with viral RNA. Three microRNA-122 recognition elements (MREs) have been previously identified: two in the 5'UTR and one in the 3'UTR. Herein, we report the relative affinity of microRNA-122 to these sites using viral RNA-coated magnetic beads, with mutagenesis and probes to disrupt interactions of microRNA-122 at specific sites.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2010
The hepatitis C virus (HCV) is a global health problem, with limited treatment options and no vaccine available. HCV uses components of the host cell to proliferate, including lipid droplets (LD) onto which HCV core proteins bind and facilitate viral particle assembly. We have measured the dynamics of HCV core protein-mediated changes in LDs and rates of LD movement on microtubules using a combination of coherent anti-Stokes Raman scattering (CARS), two-photon fluorescence (TPF), and differential interference contrast (DIC) microscopies.
View Article and Find Full Text PDFThe hepatitis C virus (HCV) is a global health issue with no vaccine available and limited clinical treatment options. Like other obligate parasites, HCV requires host cellular components of an infected individual to propagate. These host-virus interactions during HCV infection are complex and dynamic and involve the hijacking of host cell environments, enzymes and pathways.
View Article and Find Full Text PDFHepatitis C virus (HCV) relies on many interactions with host cell proteins for propagation. Successful HCV infection also requires enzymatic activity of host cell enzymes for key post-translational modifications. To identify such enzymes, we have applied activity-based protein profiling to examine the activity of serine hydrolases during HCV replication.
View Article and Find Full Text PDFHere we have simultaneously characterized the influence of inhibitors of peroxisome proliferator-activated receptor alpha (PPARalpha) and the mevalonate pathway on hepatocyte lipid metabolism and the subcellular localization of hepatitis C virus (HCV) RNA using two-photon fluorescence (TPF) and coherent anti-Stokes Raman scattering (CARS) microscopy. Using this approach, we demonstrate that modulators of PPARalpha signaling rapidly cause the dispersion of HCV RNA from replication sites and simultaneously induce lipid storage and increases in lipid droplet size. We demonstrate that reductions in the levels of cholesterol resulting from inhibition of the mevalonate pathway upregulates triglyceride levels.
View Article and Find Full Text PDFAdrenergic signaling that controls the contraction of cardiac myocyte cells and the beating of the mammalian heart is initiated by ligand binding to adrenergic receptors contained in nanoscale multiprotein complexes at the cellular membrane. Here we demonstrate that the surface-enhanced Raman scattering (SERS) of functionalized silver nanoparticles can be used to report on the receptor aggregation state of specifically label beta(2)-adrenergic receptors on mouse cardiac myocyte cells. Furthermore, multimodal imaging including Raman, Rayleigh scattering, scanning electron microscopy, and luminescence imaging was combined to fully characterize the beta(2)-adrenergic receptor-mediated aggregation of silver nanoparticles on the membrane of cardiac myocytes.
View Article and Find Full Text PDFHere we report that the phenanthridine derivative covalently linked to a fluorescein moiety (FLEth) can act as a fluorescence based probe for duplex short interfering RNA (siRNA) and that this probe can also be used to report on protein-RNA interactions. A fluorescence resonance energy transfer (FRET) signal that is observed at 600 nm occurs when FLEth is complexed with siRNA. At least 2 molecules of FLEth can bind to 21 nt duplex siRNA, and the dissociation constants for these interactions are reported.
View Article and Find Full Text PDFCopper ions are vital to human health, and mis-trafficking of them can result in many diseases including Wilson's, Menkes', and Alzheimer's diseases. Coherent anti-Stokes Raman scattering (CARS) microscopy can be used to observe changes in lipid phenotype in a noninvasive manner and is employed here to show that copper accumulation in hepatic cells results in rapid changes in lipid storage and lipid droplet density. The increase in lipid storage is dependent on the coordination environment of the copper to which the cells are exposed and changes in toxicity, lipid phenotype, and rate of copper accumulation upon treatment vary using different Cu species.
View Article and Find Full Text PDF