Publications by authors named "Rodney H Perez"

Bacteriocin production in lactic acid bacteria (LAB) has always been considered as a highly desirable trait as it enhances the strain's utility in different industrial applications. Bacteriocin producing LAB strains are considered to have higher bacterial fitness as they are able to easily establish themselves into target microbial niche and hence are more effective starter cultures in food fermentation and/or probiotic strains. The rapid advancement in genomic research revealed the true bacteriocin producing capacity of some select novel LAB strains capable of producing multiple bacteriocins which further improves their utility in different application systems.

View Article and Find Full Text PDF

Enterococcus faecium NKR-5-3 produces multiple-bacteriocins, enterocins NKR-5-3A, B, C, D, and Z (Ent53A, Ent53B, Ent53C, Ent53D, and Ent53Z). However, the biosynthetic mechanisms on how their productions are regulated are yet to be fully understood. In silico analysis revealed putative promoters and terminators in the enterocin NKR-5-3ACDZ gene cluster, and the putative direct repeats (5'-ATTTTAGGATA-3') were conserved upstream of each promoter.

View Article and Find Full Text PDF

EnkT is an ATP-binding cassette (ABC) transporter produced by Enterococcus faecium NKR-5-3, which is responsible for the secretion of multiple bacteriocins; enterocins NKR-5-3A, C, D, and Z (Ent53A, C, D, and Z). EnkT has been shown to possess a tolerant recognition mechanism that enables it to secrete the mature Ent53C from a chimeric precursor peptide containing the leader peptide moieties that are derived from different heterologous bacteriocins. In this study, to further characterize EnkT, we aimed to investigate the capacity of EnkT to recognize, process, and secrete non-cognate bacteriocins, which belong to different subclasses of class II.

View Article and Find Full Text PDF

Bacteriocins are a huge family of ribosomally synthesized peptides known to exhibit a range of bioactivities, most predominantly antibacterial activities. Bacteriocins from lactic acid bacteria are of particular interest due to the latter's association to food fermentation and the general notion of them to be safe. Among the family of bacteriocins, the groups known as circular bacteriocins and leaderless bacteriocins are gaining more attention due to their enormous potential for industrial application.

View Article and Find Full Text PDF

Enterocin NKR-5-3B (Ent53B) is a 64-residue novel circular bacteriocin synthesized from an 87-residue prepeptide. Albeit through a still unknown mechanism, the EnkB1234 biosynthetic enzyme complex processes the prepeptide to yield its mature active, circular form. To gain insights into the key region/residue that plays a role in Ent53 maturation, several mutations near the cleavage site on the precursor peptide were generated.

View Article and Find Full Text PDF

Unlabelled: A putative biosynthetic gene cluster of the enterocin NKR-5-3B (Ent53B), a novel circular bacteriocin, was analyzed by sequencing the flanking regions around enkB, the Ent53B structural gene, using a fosmid library. A region approximately 9 kb in length was obtained, and the enkB1, enkB2, enkB3, and enkB4 genes, encoding putative biosynthetic proteins involved in the production, maturation, and secretion of Ent53B, were identified. We also determined the identity of proteins mediating self-immunity against the effects of Ent53B.

View Article and Find Full Text PDF

Enterocin NKR-5-3B, one of the multiple bacteriocins produced by Enterococcus faecium NKR-5-3, is a 64-amino acid novel circular bacteriocin that displays broad-spectrum antimicrobial activity. Here we report the identification, characterization, and three-dimensional nuclear magnetic resonance solution structure determination of enterocin NKR-5-3B. Enterocin NKR-5-3B is characterized by four helical segments that enclose a compact hydrophobic core, which together with its circular backbone impart high stability and structural integrity.

View Article and Find Full Text PDF

Enterococcus faecalis F4-9 isolated from Egyptian salted-fermented fish produces a novel bacteriocin, termed enterocin F4-9. Enterocin F4-9 was purified from the culture supernatant by three steps, and its molecular mass was determined to be 5,516.6 Da by mass spectrometry.

View Article and Find Full Text PDF

Three bacteriocins from Lactobacillus plantarum KL-1 were successfully purified using ammonium sulfate precipitation, cation-exchange chromatography and reverse-phase HPLC. The bacteriocin peptides KL-1X, -1Y and -1Z had molecular masses of 3053.82, 3498.

View Article and Find Full Text PDF

Bacteriocins are heat-stable ribosomally synthesized antimicrobial peptides produced by various bacteria, including food-grade lactic acid bacteria (LAB). These antimicrobial peptides have huge potential as both food preservatives, and as next-generation antibiotics targeting the multiple-drug resistant pathogens. The increasing number of reports of new bacteriocins with unique properties indicates that there is still a lot to learn about this family of peptide antibiotics.

View Article and Find Full Text PDF

Enterococcus faecium NKR-5-3, isolated from Thai fermented fish, is characterized by the unique ability to produce five bacteriocins, namely, enterocins NKR-5-3A, -B, -C, -D, and -Z (Ent53A, Ent53B, Ent53C, Ent53D, and Ent53Z). Genetic analysis with a genome library revealed that the bacteriocin structural genes (enkA [ent53A], enkC [ent53C], enkD [ent53D], and enkZ [ent53Z]) that encode these peptides (except for Ent53B) are located in close proximity to each other. This NKR-5-3ACDZ (Ent53ACDZ) enterocin gene cluster (approximately 13 kb long) includes certain bacteriocin biosynthetic genes such as an ABC transporter gene (enkT), two immunity genes (enkIaz and enkIc), a response regulator (enkR), and a histidine protein kinase (enkK).

View Article and Find Full Text PDF

Enterococcus faecium NKR-5-3 produces four antimicrobial peptides referred here as enterocins NKR-5-3A, B, C and D. A two-step electrospray ionization-liquid chromatography and mass spectrometry (ESI-LC/MS)-based quantification system was developed to monitor its multiple bacteriocin production profiles, which is essential in understanding the complex production regulation mechanism of strain NKR-5-3. The developed ESI-LC/MS-based quantification system can easily monitor the multiple bacteriocin production of this strain.

View Article and Find Full Text PDF

Enterocins NKR-5-3A, B, C, and D were purified from the culture supernatant of Enterococcus faecium NKR-5-3 and characterized. Among the four purified peptides, enterocin NKR-5-3A (5242.3 Da) was identical to brochocin A, produced by Brochothrix campestris ATCC 43754, in mature peptides, and its putative synergistic peptide, enterocin NKR-5-3Z, was found to be encoded in ent53Z downstream of ent53A, encoding enterocin NKR-5-3A.

View Article and Find Full Text PDF