Laser speckle contrast imaging (LSCI) is an important non-invasive capability for real-time imaging for tissue-perfusion assessment. Yet, the size and weight of current clinical standard LSCI instrumentation restricts usage to mainly peripheral skin perfusion. Miniaturization of LSCI could enable hand-held instrumentation to image internal organ/tissue to produce accurate speckle-perfusion maps.
View Article and Find Full Text PDFBackground: Skin is the largest organ in the body, representing an important interface to monitor health and disease. However, there is significant variation in skin properties for different ages, genders and body regions due to the differences in the structure and morphology of the skin tissues. This study aimed to evaluate the use of non-invasive tools to discriminate a range of mechanical and functional skin parameters from different skin sites.
View Article and Find Full Text PDFObjective: Active mattresses are used to prevent, treat and relieve pressure ulcers (PU) by intermittent contact pressure/relief. However, no studies have directly assessed the vascular endothelial response to long-term active mattress use. This study investigated the hypothesis that eight weeks use of an active mattress would lead to improvements in vascular endothelial function in healthy participants.
View Article and Find Full Text PDFAdequate tissue perfusion is essential to minimize postoperative complications following microsurgery. Intraoperative knowledge of tissue perfusion could aid surgical decision-making and result in reduced complications. Laser speckle imaging is a new, noninvasive technique for mapping tissue perfusion.
View Article and Find Full Text PDFObjective: This study investigates the time-dependent behaviour and algorithmic complexity of low-frequency periodic oscillations in blood flux (BF) and oxygenation signals from the microvasculature.
Methods: Microvascular BF and oxygenation (OXY: oxyHb, deoxyHb, totalHb, and SO%) was recorded from 15 healthy young adult males using combined laser Doppler fluximetry and white light spectroscopy with local skin temperature clamped to 33 °C and during local thermal hyperaemia (LTH) at 43 °C. Power spectral density of the BF and OXY signals was evaluated within the frequency range (0.
Objective: To evaluate the dynamics of skin microvascular blood flow (BF) and tissue oxygenation parameters (OXY) measured simultaneously at the same site using a combined non-invasive BF+OXY+temperature probe.
Methods: Skin BF, oxygenated (oxyHb) and deoxygenated (deoxyHb) haemoglobin and mean oxygen saturation (SO2 ) were measured in 50 healthy volunteers at rest and during perturbation of local blood flow by post-occlusive reactive hyperaemia, sympathetic nervous system-mediated vasoconstriction (deep inspiratory breath-hold) and local skin warming. Signals were analysed in time and frequency domains.
Objective: To compare the output from a novel high power, wide separation laser Doppler flow probe (DP1-V2-HP, 4 mm, with IRLD20) with that of a standard flow probe (DP1-V2, 0.5 mm, with DRT4) (Moor UK) and to explore its potential for use in the noninvasive measurement of blood flow in deeper tissues in humans.
Methods: Monte Carlo modeling was used to predict depths of light scattering in skin with each probe, geometry.
Background And Objectives: Laser Doppler imaging (LDI) of perfusion has been performed with a novel green wavelength (532 nm) for comparison with a HeNe laser (633 nm), the aim being validation of the green laser wavelength as a research tool.
Study Design/materials And Methods: The effect of wavelength and power on images was investigated and perfusion response following both finger occlusion and local heating of the dorsum were examined as reproducible stimuli for clinical studies.
Results: The most striking difference between red and green LDI is the absence of veins on green LDI, which are seen with red LDI.
Laser Doppler perfusion monitoring (LDPM) is a noninvasive technique for monitoring skin microcirculation. The aim of this article was to investigate the influence of fiber separation on clinical LDPM measurements. A dual-channel LDPM system was used in combination with a probe that consists of two sets of detection fibers, at 0.
View Article and Find Full Text PDF