Publications by authors named "Rodica Roxana Constantinescu"

The skin, known as the largest organ of the body, is essential for maintaining physiological balance and acts as a barrier against the external environment. When skin becomes damaged and wounds appear on the skin's surface, a complex healing process, involving multiple types of cells and microenvironments, take place. Selecting a suitable dressing for a wound is crucial for accelerating healing, reducing treatment costs, and improving the patient's overall health.

View Article and Find Full Text PDF

This paper presents the obtaining and characterization of blends based on high-density polyethylene (HDPE) and plasticized starch. In addition to plasticized starch (28.8% /), the compositions made also contained other ingredients, such as polyethylene-graft-maleic anhydride as a compatibilizer, ethylene propylene terpolymer elastomer, cross-linking agents, and nanoclay.

View Article and Find Full Text PDF

Gelatin nanofibers are known as wound-healing biomaterials due to their high biocompatible, biodegradable, and non-antigenic properties compared to synthetic-polymer-fabricated nanofibers. The influence of gamma radiation doses on the structure of gelatin nanofiber dressings compared to gelatin of their origin is little known, although it is very important for the production of stable bioactive products. Different-origin gelatins were extracted from bovine and donkey hides, rabbit skins, and fish scales and used for fabrication of nanofibers through electrospinning of gelatin solutions in acetic acid.

View Article and Find Full Text PDF

Essential oils are valuable alternatives to synthetic antibiotics that have the potential to avoid the pathogen resistance side effects generated by leather. and Lavandula latifolia essential oils combined with fish scale gelatin were electrospun using a coaxial technique to design new bioactive materials for skin wound dressings fabrication. Fish scale gelatins were extracted from carp fish scales using two variants of the same method, with and without ethylenediaminetetraacetic acid (EDTA).

View Article and Find Full Text PDF

Natural polysaccharides are highly attractive biopolymers recommended for medical applications due to their low cytotoxicity and hydrophilicity. Polysaccharides and their derivatives are also suitable for additive manufacturing, a process in which various customized geometries of 3D structures/scaffolds can be achieved. Polysaccharide-based hydrogel materials are widely used in 3D hydrogel printing of tissue substitutes.

View Article and Find Full Text PDF

Hydrolysed collagen obtained from bovine leather by-products were loaded with ginger essential oil and processed by the electrospinning technique for obtaining bioactive nanofibers. Particle size measurements of hydrolysed collagen, GC-MS analysis of ginger essential oil (EO), and structural and SEM examinations of collagen nanofibers loaded with ginger essential oil collected on waxed paper, cotton, and leather supports were performed. Antioxidant and antibacterial activities against and and antifungal activity against were also determined.

View Article and Find Full Text PDF

The present study aims to bring an addition to biomass resources valorization for environmental-friendly synthesis of nanoparticles. Thus, the green synthesis of silver nanoparticles (AgNPs) was performed, using a novel and effective reducing agent, Primula officinalis extract. The synthesis was optimized by monitoring the characteristic absorption bands, using UV−Vis spectroscopy, and by evaluating the size and physical stability.

View Article and Find Full Text PDF

Bioactive collagen-chitosan-lemongrass (COL-CS-LG) membranes were prepared by casting method and analyzed for potential biomedical applications. For COL-CS-LG membranes, LG essential oil release, antioxidant properties, in vitro cytotoxicity and antimicrobial assessments were conducted, as well as free radical determination after gamma irradiation by chemiluminescence, and structural characteristics analysis through Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Differential Scanning Calorimetry (DSC). The evaluation of non-isothermal chemiluminescence after gamma radiation exposure to COL-CS-LG membranes revealed a slowing down of the oxidation process at temperatures exceeding 200 °C, in correlation with antioxidant activity.

View Article and Find Full Text PDF

The leather industry is facing important environmental issues related to waste disposal. The waste generated during the tanning process is an important resource of protein (mainly collagen) which can be extracted and reused in different applications (e.g.

View Article and Find Full Text PDF