Publications by authors named "Rodica Mariana Ion"

The COST EU-PoTaRCh Action establishes a network focused on the past, present, and future significance, production, and use of major forest by-products in Europe and beyond. The Action centers around forest by-products-primarily potash, tar, resin, and charcoal (PoTaRCh), along with plant extracts-which have been produced and utilized for over 100,000 years due to their unique chemical, biological, and therapeutic properties. The primary goal of the Action is to demonstrate the importance of these products for the socio-economic development of European countries and beyond, as well as their impact on biodiversity and the natural environment.

View Article and Find Full Text PDF

A cost-effective solution to the problems that the automotive industry is facing nowadays regarding regulations on emissions and fuel efficiency is to achieve weight reduction of automobile parts. Glass fiber-reinforced polymers are regularly used to manufacture various components, and some parts may also contain thermoplastic elastomers for toughness improvement. This work aimed to investigate the effect of styrene-(ethylene-co-butylene)-styrene triblock copolymer (E) and treated fly ash (C) on the morphological, thermal, and mechanical properties of long glass fiber (G)-reinforced polypropylene (PP).

View Article and Find Full Text PDF

The Opinion of the Scientific Committee on Health, Environmental and Emerging Risks advises the European Commission on whether the uses of titanium dioxide in toys and toy materials can be considered to be safe in light of the identified exposure, and the classification of titanium dioxide as carcinogenic category 2 after inhalation. Four toy products including casting kits, chalk, powder paints and white colour pencils containing various amounts of TiO as colouring agent were evaluated for inhalation risks. For the oral route, childrens' lip gloss/lipstick, finger paint and white colour pencils were evaluated.

View Article and Find Full Text PDF

Innovative composites based on polypropylene waste impurified cu HDPE (PPW) combined with two thermoplastic block-copolymers, namely styrene-butadiene-styrene (SBSBC) and styrene-isoprene-styrene (SISBC) block-copolymers, and up to 10 wt% nano-clay, were obtained by melt blending. SBSBC and SISBC with almost the same content of polystyrene (30 wt%) were synthesized by anionic sequential polymerization and used as compatibilizers for PPW. Optical microscopy evaluation of the PPW composites showed that the n-clay was encapsulated into the elastomer.

View Article and Find Full Text PDF

In this work, new treatments based on multi-walled carbon nanotubes (MWCNTs), MWCNTs decorated with zinc oxide (ZnO), MWCNTs decorated with hydroxyapatite (HAp) and MWCNTs decorated with silver (Ag) nanoparticles dispersed in PHBHV solution are proposed for improving sound oak wood properties. We hypothesize that the solutions containing decorated MWCNTs will be more efficient as wood consolidants, not only because of the improved mechanical properties of the treated wood but also because of the hydrophobic layer created on the wood surface. In order to test these hypotheses, the treatments' potential was investigated by a number of complex methods, such as colorimetric parameter measurements, water absorption tests, mechanical tests, artificial aging and antifungal tests.

View Article and Find Full Text PDF

Background And Aim: Photodynamic therapy, PDT, is a promising option among the local treatments with oncolytic potential. Although the basic principle is simple, its intricate mechanisms allow for a broad range of optimization methods. The purpose of this study was to assess the effects of Resveratrol and Curcumin as adjuvants of PDT on experimental tumors.

View Article and Find Full Text PDF

This research focuses on the synthesis of multi-walled carbon nanotubes (MWCNTs) decorated with TiO nanoparticles (NPs) and incorporated in cellulose acetate-collagen film in order to obtain a new biomaterial with potential biomedical applications and improved antimicrobial activity. The successful decoration of the MWCNTs with TiO NPs was confirmed by several structural and morphological analysis, such as Fourier transformed infrared spectroscopy, Raman spectroscopy, X-ray diffraction and transmission electron microscopy. The obtained nanocomposites were further incorporated into cellulose acetate-collagen films, at different concentrations and absorption kinetics, antimicrobial activity and in vitro biocompatibility of the obtained films was investigated.

View Article and Find Full Text PDF

In recent years, the rising number of bone diseases which affect millions of people worldwide has led to an increased demand for materials with restoring and augmentation properties that can be used in therapies for bone pathologies. In this work, PMMA- MBG composite scaffolds containing ceria (0, 1, 3 mol%) were obtained by the phase separation method. The obtained composite scaffolds were characterized by X-ray diffraction, infrared spectroscopy, and scanning electron microscopy.

View Article and Find Full Text PDF

Multifunctional composite coatings composed of metal oxide nanoparticles dispersed in polymer matrices are an advanced solution to solve the problem of stone heritage deterioration. Their innovative design is meant to be stable, durable, transparent, easy to apply and remove, non-toxic, hydrophobic, and permeable. Coating formulations for the protection of buildings and monuments have been intensively researched lately.

View Article and Find Full Text PDF

In this study, multi-walled carbon nanotubes (MWCNTs) were decorated with different types of nanoparticles (NPs) in order to obtain hybrid materials with improved antimicrobial activity. Structural and morphological analysis, such as Fourier transformed infrared spectroscopy, Raman spectroscopy, X-ray diffraction, transmission electron microscopy, environmental scanning electron microscopy/energy-dispersive X-ray spectroscopy and the Brunauer-Emmett-Teller technique were used in order to investigate the decoration of the nanotubes with NPs. Analysis of the decorated nanotubes showed a narrow size distribution of NPs, 7-13 nm for the nanotubes decorated with zinc oxide (ZnO) NPs, 15-33 nm for the nanotubes decorated with silver (Ag) NPs and 20-35 nm for the nanotubes decorated with hydroxyapatite (HAp) NPs, respectively.

View Article and Find Full Text PDF

Chronic neuropathic pain, particularly peripheral pain, is a cause of great concern for diabetic patients. Current treatments include numerous agents such as capsaicinoids, a known deterrent of neuropathic pain despite the inconvenience associated with local side effects. In this context, the current work aims to elucidate the potential mechanisms involved in cytotoxicity by capsaicin and proposes an efficient formulation of capsaicin in alginate microcapsules, which significantly reduces side effects from capsaicin topical administration.

View Article and Find Full Text PDF

In the last several years, the electronic waste, especially printed circuit boards have significantly increased over the world, generating one of the highest rates of solid waste. The recycling process of the printed circuit boards implies mainly the recovery of metals and glass fibers, while the reuse of the polymeric support has remained largely in the phase of research. In this paper, the non-metallic part of printed circuit boards was used as filler (up to 30%), but also to improve the fire resistance of thermoplastic composites based on recycled polypropylene and diene block-copolymers.

View Article and Find Full Text PDF

In the last few years, the preservation of cultural heritage has become an important issue globally, due to the fact that artifacts and monuments are continually threatened by degradation. It is thus very important to find adequate consolidators that are capable of saving and maintaining the natural aspect of these objects. This study aims to provide an updated survey of the main nanomaterials used for the conservation and restoration of cultural heritage.

View Article and Find Full Text PDF

Background: Photodynamic therapy (PDT) is a treatment of cancer due to its ability to induce cell death, oxidative stress and acute inflammatory reaction in targeted sites. To optimize the effect of PDT the addition of some compounds with supplementary cytotoxic effect on tumor cells was tried.

Methods: The study was performed on 35 Wistar male albino rats with Walker 256 carcinosarcoma.

View Article and Find Full Text PDF

Capsaicin is a natural protoalkaloid recognized as the main pungent component in hot peppers ( L.). The capsaicin receptor is highly expressed in the unmyelinated type C nerve fibers originating from small diameter sensory neurons in dorsal root ganglia and cranial nerve ganglia correspondents.

View Article and Find Full Text PDF

This study aims to provide an overview of the main polyhydroxyalkanoates (PHAs) used in medical applications. In this review, it has been demonstrated that the properties of PHAs can be controlled both by varying the concentration of units in the copolymer and the substrate for PHA production. Another way of controlling the mechanical properties of PHAs is varying the 3HV content, such as the case of P(3HB-co-3HV).

View Article and Find Full Text PDF

Phthalocyanines (Pc) and their metallated derivatives are strongly considered for photodynamic therapy (PDT) possessing unique properties as possible new photosensitizers (PS). We have used toxicological assessments, real-time monitoring of cellular impedance, and imagistic measurements for assessing the in vitro dark toxicity and PDT efficacy of Ga(III)-Pc in SHSy5Y neuroblastoma cells. We have established the non-toxic concentration range of Ga(III)-Pc, a compound which shows a high intracellular accumulation, with perinuclear distribution in confocal microscopy.

View Article and Find Full Text PDF

Background: Melanoma therapy is challenging, especially in advanced cases, due to multiple developed tumor defense mechanisms. Photodynamic therapy (PDT) might represent an adjuvant treatment, because of its bimodal action: tumor destruction and immune system awakening. In this study, a combination of PDT mediated by a metal substituted phthalocyanine-Gallium phthalocyanine chloride (GaPc) and Metformin was used against melanoma.

View Article and Find Full Text PDF

Metallo-phthalocyanines due to their photophysical characteristics as high yield of triplet state and long lifetimes, appear to be good candidates for photodynamic therapy (PDT). Complexes with diamagnetic metals such as Zn2+, Al3+ Ga3+ and In3+meet such requirements and are recognized as potential PDT agents. Clinically, Photofrin® PDT in neuroblastoma therapy proved in pediatric subjects diagnosed with progressive/recurrent malignant brain tumors increased progression free survival and overall survival outcome.

View Article and Find Full Text PDF

Melanoma, a cancer derived from melanocytes is very difficult to treat, especially in advanced cases. There are several encouraging studies of the efficacy of photodynamic therapy (PDT) in melanoma. However, PDT has to overcome the main defense mechanisms like: defects in the apoptotic pathways, pigmentation, sequestration of the photosensitisers (PS) inside melanosomes and increased oxidative stress defense.

View Article and Find Full Text PDF

The incidence of colorectal cancer is higher in men than in women, amounting to 15% of cancer-related diseases as a whole. As such, undesirable effects, arising from the administration of current chemotherapeutic agents (the FOLFIRI/FOLFOX combinations), which are exerted on the remaining non-cancerous tissues and/or cells, have contributed to the occurrence of resistance to multiple drugs, thus markedly reducing their efficacy. However, the delivery of chemotherapeutic agents may be improved and their action may be more selectively targeted to diseased tissues/cells by means of developing biotechnologies and nano‑techniques.

View Article and Find Full Text PDF

Unlabelled: Melanoma, a cancer that arises from melanocytes, is one of the most unresponsive cancers to known therapies and has a tendency to produce early metastases. Several studies showed encouraging results of the efficacy of photodynamic therapy (PDT) in melanoma, in different experimental settings in vitro and in vivo, as well as several clinical reports.

Aims: Our study focuses on testing the antimelanoma efficacy of several new, synthetic photosensitisers (PS), from two different chemical classes, respectively four porphyrins and six phthalocyanines.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) could be an adjuvant therapy in melanoma, an aggressive cancer that arises from melanocytes. Several reports showed encouraging results of the efficacy of PDT in melanoma on experimental models and in clinical trials. Therefore, we studied the efficacy of two derivatives of tetraphenylporphyrin (TPP): meso-5,10,15,20-tetrakis (4-hydroxyphenyl) porphyrin (THOPP) and meso-5-(4-hydroxyphenyl)-10,15,20-tris (4-methoxyphenyl) porphyrin (THOMPP) as photosensitizers for PDT, compared to FDA approved delta aminolevulinic acid (ALA) against a lightly pigmented, melanoma cell line, WM35, in vitro.

View Article and Find Full Text PDF

Background: Photodynamic therapy is an alternative treatment of muco-cutaneous tumors that uses a light source able to photoactivate a chemical compound that acts as a photosensitizer. The phthalocyanines append to a wide chemical class that encompasses a large range of compounds; out of them aluminium-substituted disulphonated phthalocyanine possesses a good photosensitizing potential.

Results: The destructive effects of PDT with aluminium-substituted disulphonated phthalocyanine are achieved by induction of apoptosis in tumoral cells as assessed by flow cytometry analysis.

View Article and Find Full Text PDF

This paper is aimed to describe a simple and rapid eco-friendly bottom-up approach for the preparation of antioxidant silver bionanostructures using a leaf extract from sage (Salvia officinalis L.). The bioreduction property of sage in the synthesis of silver nanoparticles was investigated by UV-VIS and Attenuated Total Reflectance Fourier Transform Infrared spectroscopy.

View Article and Find Full Text PDF