Publications by authors named "Roderick Gagne"

SARS-CoV-2 continues to transmit and evolve in humans and animals. White-tailed deer (Odocoileus virginianus) have been previously identified as a zoonotic reservoir for SARS-CoV-2 with high rates of infection and probable spillback into humans. Here we report sampling 1,127 white-tailed deer (WTD) in Pennsylvania, and a genomic analysis of viral dynamics spanning 1,017 days between April 2021 and January 2024.

View Article and Find Full Text PDF

The ability to rapidly respond to wildlife health events is essential. However, such events are often unpredictable, especially with anthropogenic disturbances and climate-related environmental changes driving unforeseen threats. Many events also are short-lived and go undocumented, making it difficult to draw on lessons learned from past investigations.

View Article and Find Full Text PDF

Endogenous retroviruses (ERV) are indicators of vertebrate evolutionary history and play important roles as homeostatic regulators. ERV long terminal repeat (LTR) elements may act as cis-activating promoters or trans-activating enhancer elements modifying gene transcription distant from LTR insertion sites. We previously documented that endogenous feline leukemia virus (FeLV)-LTR copy number variation in individual cats tracks inversely with susceptibility to virulent FeLV disease.

View Article and Find Full Text PDF
Article Synopsis
  • Mass mortality events in wildlife can indicate new infectious diseases; in 2021, numerous dead songbirds were reported in the eastern US, showing various health issues.
  • Diagnostic tests like high-throughput metagenomic sequencing were used to analyze samples, revealing many potentially harmful microbes, mainly bacteria, but no single pathogen was consistently found among the affected birds.
  • The consistent results prompted researchers to explore other causes, such as environmental factors and nutritional issues, showcasing the value of metagenomic techniques in studying wildlife diseases and guiding future investigations.
View Article and Find Full Text PDF

SARS-CoV-2 (SARS2) infection of a novel permissive host species can result in rapid viral evolution. Data suggest that felids are highly susceptible to SARS2 infection, and species-specific adaptation following human-to-felid transmission may occur. We employed experimental infection and analysis of publicly available SARS2 sequences to observe variant emergence and selection in domestic cats.

View Article and Find Full Text PDF

Feline leukemia virus (FeLV) is a gammaretrovirus with horizontally transmitted and endogenous forms. Domestic cats are the primary reservoir species, but FeLV outbreaks in endangered Florida panthers and Iberian lynxes have resulted in mortalities. To assess prevalence and interspecific/intraspecific transmission, we conducted an extensive survey and phylogenetic analysis of FeLV infection in free-ranging pumas ( = 641) and bobcats ( = 212) and shelter domestic cats ( = 304).

View Article and Find Full Text PDF

Hepadnaviruses are partially double-stranded DNA viruses that infect a variety of species. The prototypical virus in this family is the human hepatitis B virus, which chronically infects approximately 400 million people worldwide and is a risk factor for progressive liver disease and liver cancer. The first hepadnavirus isolated from carnivores was a domestic cat hepadnavirus (DCH), initially identified in Australia and subsequently detected in cats in Europe and Asia.

View Article and Find Full Text PDF

Identifying drivers of transmission-especially of emerging pathogens-is a formidable challenge for proactive disease management efforts. While close social interactions can be associated with microbial sharing between individuals, and thereby imply dynamics important for transmission, such associations can be obscured by the influences of factors such as shared diets or environments. Directly-transmitted viral agents, specifically those that are rapidly evolving such as many RNA viruses, can allow for high-resolution inference of transmission, and therefore hold promise for elucidating not only which individuals transmit to each other, but also drivers of those transmission events.

View Article and Find Full Text PDF
Article Synopsis
  • The SARS-CoV-2 pandemic originated from animal-to-human spillover, and white-tailed deer have been found to be significantly infected with the virus in North America.
  • In a study conducted in Pennsylvania, 16.3% of nasal swab samples from deer tested positive for SARS-CoV-2, revealing the presence of alpha and delta variants in this species.
  • The findings indicate that the virus may be circulating among deer populations, suggesting a potential new animal reservoir that could lead to future spillback infections in humans.
View Article and Find Full Text PDF

is the primary agent causing dermatophytosis in cats, and also infects humans, dogs, and other species. Assessment of genetic variation among isolates in the United States has not been conducted. Further, mating type and assessment of disease severity associated with genotypic characteristics have not been rigorously evaluated.

View Article and Find Full Text PDF

Urbanization is decreasing wildlife habitat and connectivity worldwide, including for apex predators, such as the puma (). Puma populations along California's central and southern coastal habitats have experienced rapid fragmentation from development, leading to calls for demographic and genetic management. To address urgent conservation genomic concerns, we used double-digest restriction-site associated DNA (ddRAD) sequencing to analyze 16,285 genome-wide single-nucleotide polymorphisms (SNPs) from 401 pumas sampled broadly across the state.

View Article and Find Full Text PDF

Hunting can fundamentally alter wildlife population dynamics but the consequences of hunting on pathogen transmission and evolution remain poorly understood. Here, we present a study that leverages a unique landscape-scale quasi-experiment coupled with pathogen-transmission tracing, network simulation and phylodynamics to provide insights into how hunting shapes feline immunodeficiency virus (FIV) dynamics in puma (Puma concolor). We show that removing hunting pressure enhances the role of males in transmission, increases the viral population growth rate and increases the role of evolutionary forces on the pathogen compared to when hunting was reinstated.

View Article and Find Full Text PDF

Southern sea otter (Enhydra lutris nereis) population recovery is influenced by a variety of factors, including predation, biotoxin exposure, infectious disease, oil spills, habitat degradation, and resource limitation. This population has also experienced a significant genetic bottleneck, resulting in low genetic diversity. We investigated how two metrics, familial relatedness and genetic diversity, are correlated with common causes of mortality in southern sea otters, including cardiomyopathy, acanthocephalan (Profilicollis spp.

View Article and Find Full Text PDF

SARS-CoV-2 spillback from humans into domestic and wild animals has been well documented, and an accumulating number of studies illustrate that human-to-animal transmission is widespread in cats, mink, deer, and other species. Experimental inoculations of cats, mink, and ferrets have perpetuated transmission cycles. We sequenced full genomes of Vero cell-expanded SARS-CoV-2 inoculum and viruses recovered from cats ( = 6), dogs ( = 3), hamsters ( = 3), and a ferret ( = 1) following experimental exposure.

View Article and Find Full Text PDF

We introduce a new R package "MrIML" ("Mister iml"; Multi-response Interpretable Machine Learning). MrIML provides a powerful and interpretable framework that enables users to harness recent advances in machine learning to quantify multilocus genomic relationships, to identify loci of interest for future landscape genetics studies, and to gain new insights into adaptation across environmental gradients. Relationships between genetic variation and environment are often nonlinear and interactive; these characteristics have been challenging to address using traditional landscape genetic approaches.

View Article and Find Full Text PDF

Feline leukemia virus (FeLV) is associated with a range of clinical signs in felid species. Differences in disease processes are closely related to genetic variation in the envelope () region of the genome of six defined subgroups. The primary hosts of FeLV are domestic cats of the genus that also harbor endogenous FeLV (enFeLV) elements stably integrated in their genomes.

View Article and Find Full Text PDF

Unlabelled: SARS-CoV-2 spillback from humans into domestic and wild animals has been well-documented. We compared variants of cell culture-expanded SARS-CoV-2 inoculum and virus recovered from four species following experimental exposure. Five nonsynonymous changes in nsp12, S, N and M genes were near fixation in the inoculum, but reverted to wild-type sequences in RNA recovered from dogs, cats and hamsters within 1-3 days post-exposure.

View Article and Find Full Text PDF

The advent of whole genome sequencing has revealed much about the genomes of animals including the relatively large percentage of the genome consisting of endogenous retroviruses (ERV; International Human Genome Sequencing Consortium, 2001). An ERV arises when a retrovirus integrates into a host germ cell genome through normal infection processes. Germline infections can be transmitted to offspring through Mendelian inheritance and at times become fixed elements of the host genome (Weiss, 2006).

View Article and Find Full Text PDF

Parasite success typically depends on a close relationship with one or more hosts; therefore, attributes of parasitic infection have the potential to provide indirect details of host natural history and are biologically relevant to animal conservation. Characterization of parasite infections has been useful in delineating host populations and has served as a proxy for assessment of environmental quality. In other cases, the utility of parasites is just being explored, for example, as indicators of host connectivity.

View Article and Find Full Text PDF

Urban expansion can fundamentally alter wildlife movement and gene flow, but how urbanization alters pathogen spread is poorly understood. Here, we combine high resolution host and viral genomic data with landscape variables to examine the context of viral spread in puma (Puma concolor) from two contrasting regions: one bounded by the wildland urban interface (WUI) and one unbounded with minimal anthropogenic development (UB). We found landscape variables and host gene flow explained significant amounts of variation of feline immunodeficiency virus (FIV) spread in the WUI, but not in the unbounded region.

View Article and Find Full Text PDF

Preserving connectivity in the core of a species' range is crucial for long-term persistence. However, a combination of ecological characteristics, social behavior, and landscape features can reduce connectivity among wildlife populations and lead to genetic structure. Pronghorn (), for example, exhibit fluctuating herd dynamics and variable seasonal migration strategies, but GPS tracking studies show that landscape features such as highways impede their movements, leading to conflicting hypotheses about expected levels of genetic structure.

View Article and Find Full Text PDF

Emerging viral outbreaks resulting from host switching is an area of continued scientific interest. Such events can result in disease epidemics or in some cases, clinically silent outcomes. These occurrences are likely relatively common and can serve as tools to better understand disease dynamics, and may result in changes in behavior, fecundity, and, ultimately survival of the host.

View Article and Find Full Text PDF