Large-scale sequencing has enabled unparalleled opportunities to investigate the role of rare coding variation in human phenotypic variability. Here, we present a pan-ancestry analysis of sequencing data from three large biobanks, including the All of Us research program. Using mixed-effects models, we performed gene-based rare variant testing for 601 diseases across 748,879 individuals, including 155,236 with ancestry dissimilar to European.
View Article and Find Full Text PDFBackground: Hypertrophic cardiomyopathy (HCM) is an inherited cardiac condition affecting ~1 in 500 and exhibits marked genetic heterogeneity. Previously published in 2019, 57 HCM-associated genes were curated providing the first systematic evaluation of gene-disease validity. Here we report work by the ClinGen Hereditary Cardiovascular Disorders Gene Curation Expert Panel (HCVD-GCEP) to reappraise the clinical validity of previously curated and new putative HCM genes.
View Article and Find Full Text PDFJ Cardiovasc Transl Res
December 2023
J Cardiovasc Transl Res
December 2023
Excessive trabeculation of the cardiac left ventricular wall is a complex phenotypic substrate associated with various physiological and pathological processes. There has been considerable conjecture as to whether hypertrabeculation contributes to disease and whether left ventricular non-compaction (LVNC) cardiomyopathy is a distinct pathology. Building on recent insights into the genetic basis of LVNC cardiomyopathy, in particular three meta-analysis studies exploring genotype-phenotype associations using different methodologies, this review examines how genetic research can advance our understanding of trabeculation.
View Article and Find Full Text PDFAims: Hypertrophic cardiomyopathy (HCM) is characterized by phenotypic heterogeneity that is partly explained by the diversity of genetic variants contributing to disease. Accurate interpretation of these variants constitutes a major challenge for diagnosis and implementing precision medicine, especially in understudied populations. The aim is to define the genetic architecture of HCM in North African cohorts with high consanguinity using ancestry-matched cases and controls.
View Article and Find Full Text PDFHypertrophic cardiomyopathy (HCM) is an important cause of morbidity and mortality with both monogenic and polygenic components. We here report results from the largest HCM genome-wide association study (GWAS) and multi-trait analysis (MTAG) including 5,900 HCM cases, 68,359 controls, and 36,083 UK Biobank (UKB) participants with cardiac magnetic resonance (CMR) imaging. We identified a total of 70 loci (50 novel) associated with HCM, and 62 loci (32 novel) associated with relevant left ventricular (LV) structural or functional traits.
View Article and Find Full Text PDFDiscrete categorization of Mendelian disease genes into dominant and recessive models often oversimplifies their underlying genetic architecture. Cardiomyopathies (CMs) are genetic diseases with complex etiologies for which an increasing number of recessive associations have recently been proposed. Here, we comprehensively analyze all published evidence pertaining to biallelic variation associated with CM phenotypes to identify high-confidence recessive genes and explore the spectrum of monoallelic and biallelic variant effects in established recessive and dominant disease genes.
View Article and Find Full Text PDFGenetic cardiomyopathies are disorders of the cardiac muscle, most often explained by pathogenic mutations in genes encoding sarcomere, cytoskeleton, or ion channel proteins. Clinical phenotypes such as heart failure and arrhythmia are classically treated with generic drugs, but aetiology-specific and targeted treatments are lacking. As a result, cardiomyopathies still present a major burden to society, and affect many young and older patients.
View Article and Find Full Text PDFAims: Catecholaminergic polymorphic ventricular tachycardia (CPVT) and short QT syndrome (SQTS) are inherited arrhythmogenic disorders that can cause sudden death. Numerous genes have been reported to cause these conditions, but evidence supporting these gene-disease relationships varies considerably. To ensure appropriate utilization of genetic information for CPVT and SQTS patients, we applied an evidence-based reappraisal of previously reported genes.
View Article and Find Full Text PDFHypertrophic cardiomyopathy (HCM) was traditionally described as an autosomal dominant Mendelian disease but is now increasingly recognized as having a complex genetic aetiology. Although eight core genes encoding sarcomeric proteins account for >90% of the pathogenic variants in patients with HCM, variants in several additional genes (ACTN2, ALPK3, CSRP3, FHOD3, FLNC, JPH2, KLHL24, PLN and TRIM63), encoding non-sarcomeric proteins with diverse functions, have been shown to be disease-causing in a small number of patients. Genome-wide association studies (GWAS) have identified numerous loci in cardiomyopathy case-control studies and biobank investigations of left ventricular functional traits.
View Article and Find Full Text PDF