Eur J Endocrinol
March 1995
Although information regarding insulin secretion usually is considered equivalent when generated in the mouse or the rat, it is established that the kinetics of insulin secretion from mouse and rat pancreatic beta cells differ. The mechanisms underlining these differences are not understood. The in vitro perfused pancreas and isolated islets of the mouse or rat were employed in this study to investigate the role of cyclic adenosine monophosphate (cAMP), a major positive modulator of beta-cell function, as one differentiating signal for the uniquely different insulin release from the beta cells of these commonly used rodents.
View Article and Find Full Text PDFComplete loss of pancreatic insulin function in insulin-dependent diabetes is thought to be due to an autoimmune cytokine-mediated destruction of the beta-cell. The effects of several classes of agents on interleukin-1 beta (IL-1 beta)-induced suppression of insulin secretion, beta-cell NAD levels, and beta-cell viability were examined. After overnight incubation of isolated rat islets with 15 U/ml IL-1 beta and 11 mM glucose, sequential hourly insulin secretory responses to the same glucose concentration, 22 mM glucose, and 22 mM glucose plus forskolin were severely inhibited to 10-37% of the control value.
View Article and Find Full Text PDFTo evaluate the effect of chronically elevated adenylyl cyclase, we targeted the expression of a constitutively active mutant alpha-subunit (alpha s+) of Gs to the insulin-producing pancreatic beta-cells of transgenic mice. As assessed by the polymerase chain reaction, expression of alpha s+ mRNA was restricted to the transgenic pancreas. Histological analysis by light microscopy and immunohistochemistry for insulin, glucagon, and somatostatin appeared normal in transgenic islets.
View Article and Find Full Text PDFThe spontaneous decline of insulin secretion which occurs under a variety of secretory conditions is well documented and suggests a general desensitization of the secretory process distal to signal recognition. Accordingly, we have investigated the effects of agents thought to mobilize intracellular Ca++ on insulin secretion over 24 h, which includes periods of rising secretory activity (second phase) and desensitized secretory activity (third phase). During the first 3 h of glucose stimulation of freshly isolated rat islets, insulin secretion was strongly inhibited by 30 microM 3,4,5-trimethoxybenzoic acid 8-(diethylamino) octyl ester (TMB) or 300 microM tetracaine hydrochloride (TC).
View Article and Find Full Text PDFThe spontaneous decline of insulin secretion (third phase) that occurs under a variety of secretory conditions is well documented and suggests a general impairment or desensitization of the secretory process. We have examined several aspects of Ca2+ flux as well as regulators of Ca-linked second messenger events in freshly isolated rat islets chronically stimulated with glucose over 24 h, a period that encompasses initial (hour 1), peak (hour 3), and subsequent impaired or desensitized (hour 20-22) secretion. In islets incubated for these periods in HB104 medium with 22 mM glucose, 45Ca2+ uptake did not vary (12.
View Article and Find Full Text PDFIn this study we have examined the role of glucagon and somatostatin in regulating glucose-induced desensitization of insulin secretion from rat islets. Measured in batch incubations with medium routinely used to induce three phases of insulin secretion, secreted glucagon levels fell off over 24 h to 20% of peak secretion levels. Although more responsive to various secretagogues, somatostatin secretion also declined to the same degree.
View Article and Find Full Text PDF