Publications by authors named "Rocky M Cranenburgh"

Antibiotic resistance genes are widely used to select bacteria transformed with plasmids and to prevent plasmid loss from cultures, yet antibiotics represent contaminants in the biopharmaceutical manufacturing process, and retaining antibiotic resistance genes in vaccines and biological therapies is discouraged by regulatory agencies. To overcome these limitations, we have developed X-mark™, a novel technology that leverages Xer recombination to generate selectable marker gene-free plasmids for downstream therapeutic applications. Using this technique, X-mark plasmids with antibiotic resistance genes flanked by XerC/D target sites are generated in cytosol aminopeptidase ( mutants, which are deficient in Xer recombination on plasmids, and subsequently transformed into enteric bacteria with a functional Xer system.

View Article and Find Full Text PDF

Enteric fever is a major global healthcare issue caused largely by serovars Typhi and Paratyphi A. The objective of this study was to develop a novel, bivalent oral vaccine capable of protecting against both serovars. Our approach centred on genetically engineering the attenuated Typhi ZH9 strain, which has an excellent safety record in clinical trials, to introduce two Paratyphi A immunogenic elements: flagellin H:a and lipopolysaccharide (LPS) O:2.

View Article and Find Full Text PDF

Recombinant Bacillus subtilis spores expressing a TB antigen, MPT64, were tested for their ability to protect mice against tuberculosis challenge. A chimeric gene consisting of the spore coat gene cotB fused to mpt64 was constructed, and expression of a stable CotB-MPT64 hybrid protein of the spore coat verified. Spores were evaluated as a live vaccine and also formaldehyde inactivated.

View Article and Find Full Text PDF

The use of bacterial systems for recombinant protein production has advantages of simplicity, time and cost over competing systems. However, widely used bacterial expression systems (e.g.

View Article and Find Full Text PDF

Gram-positive bacteria are known to export many proteins to the cell wall and growth medium, and accordingly, many studies have addressed the respective protein export mechanisms. In contrast, very little is known about the subsequent fate of these proteins. The present studies were therefore aimed at determining the fate of native exported proteins in the model organism Bacillus subtilis.

View Article and Find Full Text PDF

Attenuated Salmonella enterica offers a vaccine delivery route that has the benefits of enhanced immunogenicity and oral delivery. The majority of immunization studies have been conducted to deliver recombinant proteins, expressed from a gene that is either chromosomally integrated or carried on a low- or medium-copy number plasmid. There are, however, an increasing number of reports demonstrating the delivery of DNA vaccines, but the high-copy number plasmids that are preferentially used for this application are unstable in Salmonella.

View Article and Find Full Text PDF

Live attenuated bacteria provide the potential to replace traditional needle-based vaccination with an orally administered vaccine. The heterologous antigen gene is usually transformed as a multi-copy plasmid into the bacterial cell, but plasmids in live bacterial vaccine strains are often unstable, so an alternative approach is to integrate the single-copy antigen gene into the bacterial chromosome. We report a comparison between the chromosomally integrated and the plasmid-borne Bacillus anthracis protective antigen gene in live Salmonella enterica serovar Typhimurium, using the Operator-Repressor Titration (ORT) system to ensure stable plasmid maintenance.

View Article and Find Full Text PDF

A simple, effective method of unlabeled, stable gene insertion into bacterial chromosomes has been developed. This utilizes an insertion cassette consisting of an antibiotic resistance gene flanked by dif sites and regions homologous to the chromosomal target locus. dif is the recognition sequence for the native Xer site-specific recombinases responsible for chromosome and plasmid dimer resolution: XerC/XerD in Escherichia coli and RipX/CodV in Bacillus subtilis.

View Article and Find Full Text PDF

We report a novel application for the operator-repressor titration (ORT) plasmid maintenance system. The ability of ORT to maintain a plasmid during production of DNA has been demonstrated previously. In this study, we have used the ORT system to maintain a plasmid during high cell density cultivation and expression of a recombinant protein.

View Article and Find Full Text PDF

Live, attenuated bacteria are effective vectors for heterologous antigen delivery. However, loss of heterologous gene-bearing plasmids is problematic, and antibiotics and their resistance genes are not desirable for in vivo DNA vaccine delivery due to biosafety and regulatory concerns. To solve this problem, we engineered the first vaccine delivery strain that has no requirement for antibiotics or other selectable marker genes to maintain the recombinant plasmid.

View Article and Find Full Text PDF

The Escherichia coli strain DH1lacdapD enables plasmid selection and maintenance that is free from antibiotics and selectable marker genes. This is achieved by using only the lac operator sequence as a selectable element. This strain is currently used to generate high copy number plasmids with no antibiotic resistance genes for use as DNA vaccines and for expression of recombinant proteins.

View Article and Find Full Text PDF