Crit Rev Anal Chem
September 2024
Mass spectrometry (MS) is a formidable analytical tool for the analysis of non-polar to polar compounds individually and/or from mixtures, providing information on the molecular weights and chemical structures of the analytes. During the last more than one-decade, ambient ionization mass spectrometry (AIMS) has developed quickly, producing a wide range of platforms and proving scientific improvements in a variety of domains, from biological imaging to quick quality control. These methods have made it possible to detect target analytes in real time without sample preparation in an open environment, and they can be connected to any MS system with an atmospheric pressure interface.
View Article and Find Full Text PDFPhotoinduced decarbonylation of Cp*M(CO)(3)Me (M = Mo and W, Cp* = η(5)-C(5)Me(5)) in the presence of xantsilH(2) [xantsil = (9,9-dimethylxanthene-4,5-diyl)bis(dimethylsilyl)] in pentane gave bis(silyl)hydrido complexes Cp*M(κ(2)Si,Si-xantsil)(CO)(2)(H) (1a: M = Mo and 1b: M = W) through two-fold Si-H oxidative addition and methane elimination. Further irradiation of 1a,b in toluene afforded tridentate xantsil complexes Cp*M(κ(3)Si,Si,O-xantsil)(CO)(H) (2a: M = Mo and 2b: M = W) via CO dissociation. Reactions of complexes 2a,b with nitriles led to stoichiometric hydrosilylation at the C[triple bond, length as m-dash]N triple bond.
View Article and Find Full Text PDFThe synthesis and characterization of tungsten and molybdenum complexes of the xanthene-based bis(silyl) ligand (xantsil) with a kappa3(Si,Si,O) coordination mode are reported, where an insertion of tBuCN into a tungsten-silicon bond leads to formation of an eta2-iminoacyl complex.
View Article and Find Full Text PDF