Lecithin:retinol acyltransferase (LRAT) plays a major role in the vertebrate visual cycle. Indeed, it is responsible for the esterification of all-trans retinol into all-trans retinyl esters, which can then be stored in microsomes or further metabolized to produce the chromophore of rhodopsin. In the present study, a detailed characterization of the enzymatic properties of truncated LRAT (tLRAT) has been achieved using in vitro assay conditions.
View Article and Find Full Text PDFThe 5beta-reductases (AKR1D1-3) are unique enzymes able to catalyze efficiently and in a stereospecific manner the 5beta-reduction of the C4-C5 double bond found in Delta4-3-ketosteroids, including steroid hormones and bile acids precursors such as 7alpha-hydroxy-4-cholesten-3-one and 7alpha,12alpha-dihydroxy-4-cholesten-3-one. In order to elucidate the binding mode and substrate specificity in detail, biochemical and structural studies on human 5beta-reductase (h5beta-red; AKR1D1) have been recently undertaken. The crystal structure of a h5beta-red binary complex provides a complete picture of the NADPH-enzyme interactions involving the flexible loop B, which contributes to the maintenance of the cofactor in its binding site by acting as a "safety belt".
View Article and Find Full Text PDFThe 5beta-reductases (AKR1D1-3) are unique enzymes able to catalyze efficiently and in a stereospecific manner the 5beta-reduction of the C4-C5 double bond found into Delta4-3-ketosteroids, including steroid hormones and bile acids. Multiple-sequence alignments and mutagenic studies have already identified one of the residues presumably located at their active site, Glu 120, as the major molecular determinant for the unique activity displayed by 5beta-reductases. To define the exact role played by this glutamate in the catalytic activity of these enzymes, biochemical and structural studies on human 5beta-reductase (h5beta-red) have been undertaken.
View Article and Find Full Text PDFLecithin retinol acyltransferase (LRAT) is a 230 amino acids membrane-associated protein which catalyzes the esterification of all-trans-retinol into all-trans-retinyl ester. The enzymatic activity of a truncated form of LRAT (tLRAT) which contains the residues required for catalysis but which is lacking N- and C-terminal hydrophobic segments has been shown to depend on the detergent used for its solubilization. Moreover, it is unknown whether tLRAT can bind membranes in the absence of these hydrophobic segments.
View Article and Find Full Text PDFJ Biol Chem
October 2007
The mouse 17alpha-hydroxysteroid dehydrogenase (m17alpha-HSD) is the unique known member of the aldo-keto reductase (AKR) superfamily able to catalyze efficiently and in a stereospecific manner the conversion of androstenedione (Delta4) into epi-testosterone (epi-T), the 17alpha-epimer of testosterone. Structural and mutagenic studies had already identified one of the residues delineating the steroid-binding cavity, A24, as the major molecular determinant for the stereospecificity of m17alpha-HSD. We report here a ternary complex crystal structure (m17alpha-HSD:NADP(+):epi-T) determined at 1.
View Article and Find Full Text PDFIn our efforts to develop compounds with therapeutic potential as antiandrogens, we synthesized a series of 5alpha-androstane-3alpha,17beta-diol derivatives with a fixed side-chain length of 3-methylenes at C-16alpha, but bearing a diversity of functional groups at the end. Among these, the chloride induced the best antiproliferative activity on androgen-sensitive Shionogi cells. Substituting the OH at C-3 by a methoxy group showed the importance of the OH.
View Article and Find Full Text PDFVery recently, the mouse 17alpha-hydroxysteroid dehydrogenase (m17alpha-HSD), a member of the aldo-keto reductase (AKR) superfamily, has been characterized and identified as the unique enzyme able to catalyze efficiently and in a stereospecific manner the conversion of androstenedione (Delta4) into epitestosterone (epi-T), the 17alpha-epimer of testosterone. Indeed, the other AKR enzymes that significantly reduce keto groups situated at position C17 of the steroid nucleus, the human type 3 3alpha-HSD (h3alpha-HSD3), the human and mouse type 5 17beta-HSD, and the rabbit 20alpha-HSD, produce only 17beta-hydroxy derivatives, although they possess more than 70% amino acid identity with m17alpha-HSD. Structural comparisons of these highly homologous enzymes thus offer an excellent opportunity of identifying the molecular determinants responsible for their 17alpha/17beta-stereospecificity.
View Article and Find Full Text PDFProtein Sci
May 2006
Androgens exert their effects by binding to the highly specific androgen receptor (AR). In addition to natural potent androgens, AR binds a variety of synthetic agonist or antagonist molecules with different affinities. To identify molecular determinants responsible for this selectivity, we have determined the crystal structure of the human androgen receptor ligand-binding domain (hARLBD) in complex with two natural androgens, testosterone (Testo) and dihydrotestosterone (DHT), and with an androgenic steroid used in sport doping, tetrahydrogestrinone (THG), at 1.
View Article and Find Full Text PDFRPE65 is the major component of the retinal pigment epithelium (RPE) microsomal membrane, and it plays a critical role in the binding of retinoids involved in the visual cycle. To understand how RPE65 binds to membranes, we have expressed and purified soluble fragments of human RPE65 fused to glutathione S-transferase (GST). The interaction between two fragments of RPE65 (F1 and F2 which include residues 1-125 and 126-250, respectively) and lipid monolayers has been studied by surface pressure, ellipsometry, and surface rheology measurements.
View Article and Find Full Text PDFBackground: Epi-testosterone (epiT) is the 17alpha-epimer of testosterone. It has been found at similar level as testosterone in human biological fluids. This steroid has thus been used as a natural internal standard for assessing testosterone abuse in sports.
View Article and Find Full Text PDFProtein Sci
June 2005
The aldo-keto reductase (AKR) human type 3 3alpha-hydroxysteroid dehydrogenase (h3alpha-HSD3, AKR1C2) plays a crucial role in the regulation of the intracellular concentrations of testosterone and 5alpha-dihydrotestosterone (5alpha-DHT), two steroids directly linked to the etiology and the progression of many prostate diseases and cancer. This enzyme also binds many structurally different molecules such as 4-hydroxynonenal, polycyclic aromatic hydrocarbons, and indanone. To understand the mechanism underlying the plasticity of its substrate-binding site, we solved the binary complex structure of h3alpha-HSD3-NADP(H) at 1.
View Article and Find Full Text PDFThe human ELAC2 gene was the first candidate prostate cancer susceptibility gene identified by linkage analysis and positional cloning. DNA sequence indicates a protein of 826 amino acids encoded by 24 exons. In the present study, we characterized the coding sequence of chimpanzee and gorilla ELAC2 orthologs by direct sequencing of genomic fragments, and of cynomolgus monkey and rat orthologs by screening cDNA libraries.
View Article and Find Full Text PDFThe aldo-keto reductase rabbit 20alpha-hydroxysteroid dehydrogenase (rb20alpha-HSD; AKR1C5) is less selective than other HSDs, since it exerts its activity both on androgens (C19 steroids) and progestins (C21 steroids). In order to identify the molecular determinants responsible for this reduced selectivity, binary (NADPH) and ternary (NADP(+)/testosterone) complex structures were solved to 1.32A and 2.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2003
The recently discovered CLECSF6 protein displays the features of a receptor involved in the down-modulation of leukocyte activation. Although CLECSF6 has been the focus of the interest of many researchers lately, a Western blot characterization of the protein is still lacking. This highly reduces our ability to gain full knowledge of the biological relevance of this protein in cell responses.
View Article and Find Full Text PDFHuman 20alpha-hydroxysteroid dehydrogenase (h20alpha-HSD; AKR1C1) catalyzes the transformation of progesterone (Prog) into 20alpha-hydroxy-progesterone (20alpha-OHProg). Although h20alpha-HSD shares 98% sequence identity with human type 3 3alpha-HSD (h3alpha-HSD3, AKR1C2), these two enzymes differ greatly in their activities. In order to explain these differences, we have solved the crystal structure of h20alpha-HSD in a ternary complex with NADP(+) and 20alpha-OHProg at 1.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
January 2002
Progesterone plays an essential role in the maintenance of the pregnancy of most mammals. 20alpha-Hydroxysteroid dehydrogenase (20alpha-HSD) catalyses the inactivation of progesterone into its inactive form, 20alpha-hydroxyprogesterone, and could thus be involved in progesterone withdrawal and in the control of gestation. In this report, the purification and crystallization of recombinant human and rabbit 20alpha-HSDs (h20alpha-HSD and rb20alpha-HSD) are described, two highly homologous enzymes possessing, in addition to their common 20alpha-HSD activity, different activities and substrate specificities.
View Article and Find Full Text PDF