Phosphate-solubilizing bacteria (PSB) transform precipitated inorganic phosphorus into soluble orthophosphates. This study evaluated the efficiency of tricalcium and iron phosphate solubilization in Pikovskaya medium using five bacterial strains (A1, A2, A3, A5, and A6) cultured in acidic and alkaline pH levels. The bacterial strain that proved to be more efficient for P solubilization and was tolerant to pH variations was selected for assessing bacterial growth and P solubilization with glucose and sucrose in the culture medium.
View Article and Find Full Text PDFRhizospheric and root-endophyte bacteria can stimulate plant growth through diverse biochemical mechanisms and pathways, particularly under biotic and abiotic stresses. For this reason, biotechnological trends on plant growth-promoting rhizobacteria (PGPR) application as biofertilizers, bioremediators, and stress alleviators are gaining increasing interest as ecofriendly strategies for sustainable agriculture management and soil restoration. The first steps needed to implement these technologies are isolation, screening, and characterization of PGPR that can be potentially applied as bioinoculants to alleviate biotic and/or abiotic stresses.
View Article and Find Full Text PDFThe capacity of four bacterial strains isolated from productive soil potato fields to solubilize tricalcium phosphate on Pikovskaya agar or in a liquid medium was evaluated. A bacterial strain was selected to evaluate capacity of plant-growth promotion on L. culture.
View Article and Find Full Text PDFA bacterial strain of Pseudomonas aeruginosa B0406 catalogued as pathogen opportunistic was capable to grow with waste cooking oil as only carbon source and produce a biosurfactant. Stability to pH (from 2 to 12), salinity (% NaCl from 0 to 20%) and temperature (from -20 °C up to 120 °C), of biosurfactants was evaluated using a response surface methodology. Biosurfactants reduced surface tension from 50 to 29 ± 1.
View Article and Find Full Text PDF