The work carried out in this paper consists of the classification of the physiological signal generated by eye movement called Electrooculography (EOG). The human eye performs simultaneous movements, when focusing on an object, generating a potential change in origin between the retinal epithelium and the cornea and modeling the eyeball as a dipole with a positive and negative hemisphere. Supervised learning algorithms were implemented to classify five eye movements; left, right, down, up and blink.
View Article and Find Full Text PDFPeople with severe disabilities require assistance to perform their routine activities; a Human-Machine Interface (HMI) will allow them to activate devices that respond according to their needs. In this work, an HMI based on electrooculography (EOG) is presented, the instrumentation is placed on portable glasses that have the task of acquiring both horizontal and vertical EOG signals. The registration of each eye movement is identified by a class and categorized using the one hot encoding technique to test precision and sensitivity of different machine learning classification algorithms capable of identifying new data from the eye registration; the algorithm allows to discriminate blinks in order not to disturb the acquisition of the eyeball position commands.
View Article and Find Full Text PDFBackground: Tinnitus is the perception of sound in the absence of any external acoustic stimulation. Transcranial direct current stimulation (tDCS) has shown promising though heterogeneous therapeutic outcomes for tinnitus. The present study aims to review the recent advances in applications of tDCS for tinnitus treatment.
View Article and Find Full Text PDF