Publications by authors named "Rocio Ochoa-Fernandez"

Cytochrome P450 monooxygenases of the CYP79 family catalyze conversion of specific amino acids into oximes feeding into a variety of metabolic plant pathways. Here we present an extensive phylogenetic tree of the CYP79 family built on carefully curated sequences collected across the entire plant kingdom. Based on a monophyletic origin of the P450s, a set of evolutionarily distinct branches was identified.

View Article and Find Full Text PDF

Gibberellins (GAs) are major regulators of developmental and growth processes in plants. Using the degradation-based signaling mechanism of GAs, we have built transcriptional regulator (DELLA)-based, genetically encoded ratiometric biosensors as proxies for hormone quantification at high temporal resolution and sensitivity that allow dynamic, rapid and simple analysis in a plant cell system, i.e.

View Article and Find Full Text PDF

Chlorophyll c is a key photosynthetic pigment that has been used historically to classify eukaryotic algae. Despite its importance in global photosynthetic productivity, the pathway for its biosynthesis has remained elusive. Here we define the CHLOROPHYLL C SYNTHASE (CHLCS) discovered through investigation of a dinoflagellate mutant deficient in chlorophyll c.

View Article and Find Full Text PDF
Article Synopsis
  • The development of complex synthetic gene networks in mammalian and plant cells necessitates diverse orthogonal gene expression systems, with light being a favored control method for its precision.
  • Traditional optogenetic tools are limited to specific wavelengths (UVB, blue, red/far-red), posing challenges especially in plants where these light-responsive receptors are already present.
  • A new green light-responsive gene switch has been created using the bacterial transcription factor CarH, offering benefits like high reversibility, elevated transgene expression, and low leakiness, with protocols provided for implementation in both mammalian cells and plant protoplasts.
View Article and Find Full Text PDF

Understanding the biological background of strigolactone (SL) structural diversity and the SL signaling pathway at molecular level requires quantitative and sensitive tools that precisely determine SL dynamics. Such biosensors may be also very helpful in screening for SL analogs and mimics with defined biological functions.Recently, the genetically encoded, ratiometric sensor StrigoQuant was developed and allowed the quantification of the activity of a wide concentration range of SLs.

View Article and Find Full Text PDF

Optogenetics is the genetic approach for controlling cellular processes with light. It provides spatiotemporal, quantitative and reversible control over biological signaling and metabolic processes, overcoming limitations of chemically inducible systems. However, optogenetics lags in plant research because ambient light required for growth leads to undesired system activation.

View Article and Find Full Text PDF

The key basic helix-loop-helix (bHLH) transcription factor in iron (Fe) uptake, FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT), is controlled by multiple signaling pathways, important to adjust Fe acquisition to growth and environmental constraints. FIT protein exists in active and inactive protein pools, and phosphorylation of serine Ser272 in the C-terminus, a regulatory domain of FIT, provides a trigger for FIT activation. Here, we use phospho-mutant activity assays and study phospho-mimicking and phospho-dead mutations of three additional predicted phosphorylation sites, namely at Ser221 and at tyrosines Tyr238 and Tyr278, besides Ser 272.

View Article and Find Full Text PDF

The ever-increasing complexity of synthetic gene networks and applications of synthetic biology requires precise and orthogonal gene expression systems. Of particular interest are systems responsive to light as they enable the control of gene expression dynamics with unprecedented resolution in space and time. While broadly used in mammalian backgrounds, however, optogenetic approaches in plant cells are still limited due to interference of the activating light with endogenous photoreceptors.

View Article and Find Full Text PDF

Modular DNA assembly simplifies multigene engineering in Plant Synthetic Biology. Furthermore, the recent adoption of a common syntax to facilitate the exchange of plant DNA parts (phytobricks) is a promising strategy to speed up genetic engineering. Following this lead, here, we present a platform for plant biodesign that incorporates functional descriptions of phytobricks obtained under pre-defined experimental conditions, and systematically registers the resulting information as metadata for documentation.

View Article and Find Full Text PDF

Optogenetic tools to control gene expression have many advantages over the classical chemically inducible systems, overcoming intrinsic limitations of chemical inducers such as solubility, diffusion, and cell toxicity. They offer an unmatched spatiotemporal resolution and permit quantitative and noninvasive control of the gene expression. Here we describe a protocol of a synthetic light-inducible system for the targeted control of gene expression in plants based on the plant photoreceptor phytochrome B and one of its interacting factors (PIF6).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: